
Ruby on Rails
Notes for ProfessionalsRuby® on

Rails
Notes for Professionals

GoalKicker.com
Free Programming Books

Disclaimer
This is an unocial free book created for educational purposes and is

not aliated with ocial Ruby® on Rails group(s) or company(s).
All trademarks and registered trademarks are

the property of their respective owners

200+ pages
of professional hints and tricks

https://goalkicker.com
https://goalkicker.com

Contents
About 1 ...

Chapter 1: Getting started with Ruby on Rails 2 ..
Section 1.1: Creating a Ruby on Rails Application 2 ..
Section 1.2: Create a new Rails app with your choice of database and including the RSpec Testing Tool

4 ..
Section 1.3: Generating A Controller 4 ..
Section 1.4: Installing Rails 5 ..
Section 1.5: Create a new Rails app with a non-standard database adapter 7 ..
Section 1.6: Creating Rails APIs in JSON 7 ..
Section 1.7: Generate a Resource with Scaolds 8 ...

Chapter 2: Routing 10 ...
Section 2.1: Resource Routing (Basic) 10 ...
Section 2.2: Constraints 11 ..
Section 2.3: Scoping routes 13 ..
Section 2.4: Concerns 15 ..
Section 2.5: Root route 16 ...
Section 2.6: Split routes into multiple files 16 ..
Section 2.7: Additional RESTful actions 17 ...
Section 2.8: Member and Collection Routes 17 ...
Section 2.9: Mount another application 18 ..
Section 2.10: Nested Routes 18 ...
Section 2.11: Redirection 19 ..
Section 2.12: Redirects and Wildcard Routes 19 ...
Section 2.13: Scope available locales 19 ..
Section 2.14: URL params with a period 20 ...

Chapter 3: ActiveRecord 21 ...
Section 3.1: Creating a Model via generator 21 ...
Section 3.2: Introduction to Callbacks 21 ...
Section 3.3: Creating a Model manually 22 ...
Section 3.4: Manually Testing Your Models 23 ..
Section 3.5: Creating A Migration 23 ..
Section 3.6: Create a Join Table using Migrations 24 ...
Section 3.7: Using a model instance to update a row 25 ...

Chapter 4: Views 26 ...
Section 4.1: Structure 26 ...
Section 4.2: Partials 26 ...
Section 4.3: AssetTagHelper 27 ..
Section 4.4: Replace HTML code in Views 28 ..
Section 4.5: HAML - an alternative way to use in your views 29 ...

Chapter 5: ActiveRecord Migrations 31 ...
Section 5.1: Adding multiple columns to a table 31 ...
Section 5.2: Add a reference column to a table 31 ..
Section 5.3: Rollback migrations 32 ..
Section 5.4: Add a new column with an index 32 ..
Section 5.5: Run specific migration 33 ...
Section 5.6: Redo migrations 33 ...
Section 5.7: Add a new column to a table 33 ..

Section 5.8: Remove an existing column from a table 34 ..
Section 5.9: Add column with default value 34 ...
Section 5.10: Running migrations in dierent environments 35 ..
Section 5.11: Create a new table 35 ...
Section 5.12: Running migrations 35 ...
Section 5.13: Change an existing column’s type 35 ...
Section 5.14: Create a hstore column 36 ..
Section 5.15: Create a join table 36 ...
Section 5.16: Add a self reference 37 ..
Section 5.17: Create an array column 37 ...
Section 5.18: Add an unique column to a table 37 ..
Section 5.19: Checking migration status 38 ...
Section 5.20: Changing Tables 38 ..
Section 5.21: Adding a NOT NULL constraint to existing data 38 ..
Section 5.22: Forbid null values 39 ...

Chapter 6: Rails Best Practices 40 ..
Section 6.1: Fat Model, Skinny Controller 40 ..
Section 6.2: Domain Objects (No More Fat Models) 40 ...
Section 6.3: Beware of default_scope 42 ..
Section 6.4: Convention Over Configuration 44 ..
Section 6.5: Don't Repeat Yourself (DRY) 45 ...
Section 6.6: You Ain’t Gonna Need it (YAGNI) 45 ...

Chapter 7: Naming Conventions 47 ...
Section 7.1: Controllers 47 ..
Section 7.2: Models 47 ..
Section 7.3: Filenames and autoloading 47 ...
Section 7.4: Views and Layouts 48 ...
Section 7.5: Models class from Controller name 48 ..

Chapter 8: ActionCable 49 ..
Section 8.1: User Authentication 49 ...
Section 8.2: [Basic] Server Side 49 ...
Section 8.3: [Basic] Client Side (Coeescript) 49 ..

Chapter 9: ActiveModel 51 ..
Section 9.1: Using ActiveModel::Validations 51 ..

Chapter 10: User Authentication in Rails 52 ..
Section 10.1: Authentication using Devise 52 ..
Section 10.2: Devise Controller Filters & Helpers 52 ..
Section 10.3: Omniauth 53 ..
Section 10.4: has_secure_password 53 ...
Section 10.5: has_secure_token 53 ..

Chapter 11: ActiveRecord Associations 55 ..
Section 11.1: Polymorphic association 55 ..
Section 11.2: Self-Referential Association 55 ..
Section 11.3: belongs_to 56 ..
Section 11.4: has_one 56 ..
Section 11.5: has_many 56 ...
Section 11.6: The has_many :through association 57 ...
Section 11.7: The has_one :through association 57 ...
Section 11.8: The has_and_belongs_to_many association 58 ...

Chapter 12: ActiveRecord Validations 59 ..
Section 12.1: Validating length of an attribute 59 ..
Section 12.2: Validates format of an attribute 59 ..
Section 12.3: Validating presence of an attribute 59 ..
Section 12.4: Custom validations 60 ..
Section 12.5: Validates inclusion of an attribute 60 ...
Section 12.6: Grouping validation 61 ...
Section 12.7: Validating numericality of an attribute 61 ...
Section 12.8: Validate uniqueness of an attribute 62 ..
Section 12.9: Skipping Validations 62 ..
Section 12.10: Confirmation of attribute 62 ..
Section 12.11: Using :on option 63 ..
Section 12.12: Conditional validation 63 ..

Chapter 13: ActiveRecord Query Interface 64 ..
Section 13.1: .where 64 ..
Section 13.2: .where with an array 64 ...
Section 13.3: Scopes 65 ..
Section 13.4: Get first and last record 66 ..
Section 13.5: Ordering 67 ...
Section 13.6: where.not 67 ..
Section 13.7: Includes 68 ...
Section 13.8: Joins 68 ..
Section 13.9: Limit and Oset 69 ...
Section 13.10: .find_by 69 ...
Section 13.11: .delete_all 69 ..
Section 13.12: ActiveRecord case insensitive search 69 ..
Section 13.13: .group and .count 70 ...
Section 13.14: .distinct (or .uniq) 70 ..

Chapter 14: ActionMailer 71 ...
Section 14.1: Basic Mailer 71 ...
Section 14.2: Generating a new mailer 72 ..
Section 14.3: ActionMailer Interceptor 72 ...
Section 14.4: Adding Attachments 72 ...
Section 14.5: ActionMailer Callbacks 73 ..
Section 14.6: Generate a Scheduled Newsletter 73 ...

Chapter 15: Rails generate commands 79 ...
Section 15.1: Rails Generate Controller 79 ..
Section 15.2: Rails Generate Migration 80 ..
Section 15.3: Rails Generate Scaold 80 ..
Section 15.4: Rails Generate Model 81 ..

Chapter 16: Configuration 82 ..
Section 16.1: Custom configuration 82 ..

Chapter 17: I18n - Internationalization 84 ...
Section 17.1: I18n with arguments 84 ...
Section 17.2: Translating ActiveRecord model attributes 84 ..
Section 17.3: Get locale from HTTP request 86 ..
Section 17.4: Pluralization 87 ..
Section 17.5: Set locale through requests 87 ...
Section 17.6: Use I18n with HTML Tags and Symbols 89 ..
Section 17.7: Use I18n in views 89 ..

Chapter 18: Using GoogleMaps with Rails 91 ..
Section 18.1: Add the google maps javascript tag to the layout header 91 ...
Section 18.2: Geocode the model 91 ...
Section 18.3: Show addresses on a google map in the profile view 92 ...
Section 18.4: Set the markers on the map with javascript 93 ..
Section 18.5: Initialize the map using a coee script class 94 ..
Section 18.6: Initialize the map markers using a coee script class 94 ..
Section 18.7: Auto-zoom a map using a coee script class 95 ..
Section 18.8: Exposing the model properties as json 96 ...

Chapter 19: File Uploads 98 ..
Section 19.1: Single file upload using Carrierwave 98 ..
Section 19.2: Nested model - multiple uploads 98 ..

Chapter 20: Caching 100 ..
Section 20.1: Russian Doll Caching 100 ..
Section 20.2: SQL Caching 100 ...
Section 20.3: Action caching 101 ..
Section 20.4: Fragment caching 101 ..
Section 20.5: Page caching 102 ..
Section 20.6: HTTP caching 102 ...

Chapter 21: ActionController 103 ...
Section 21.1: Basic REST Controller 103 ..
Section 21.2: Filters 104 ..
Section 21.3: Generating a controller 106 ..
Section 21.4: Rescuing ActiveRecord::RecordNotFound with redirect_to 107 ...
Section 21.5: Display error pages for exceptions 107 ...
Section 21.6: Output JSON instead of HTML 108 ..
Section 21.7: Controllers (Basic) 108 ...
Section 21.8: Parameters 109 ..
Section 21.9: Filtering parameters (Basic) 109 ..
Section 21.10: Redirecting 110 ...
Section 21.11: Using Views 110 ...

Chapter 22: Configuration 112 ..
Section 22.1: Rails General Configuration 112 ...
Section 22.2: Configuring assets 112 ...
Section 22.3: Configuring generators 112 ...
Section 22.4: Environments in Rails 113 ...
Section 22.5: Database Configuration 113 ..

Chapter 23: Safe Constantize 115 ...
Section 23.1: Successful safe_constantize 115 ..
Section 23.2: Unsuccessful safe_constantize 115 ..

Chapter 24: Rails 5 116 ..
Section 24.1: How to install Ruby on Rails 5 on RVM 116 ...
Section 24.2: Creating a Ruby on Rails 5 API 116 ...

Chapter 25: Authorization with CanCan 119 ..
Section 25.1: Getting started with CanCan 119 ..
Section 25.2: Handling large number of abilities 119 ...
Section 25.3: Defining abilities 121 ...
Section 25.4: Quickly test an ability 121 ..

Chapter 26: Mongoid 123 ...

Section 26.1: Fields 123 ...
Section 26.2: Installation 123 ...
Section 26.3: Creating a Model 123 ..
Section 26.4: Classic Associations 124 ...
Section 26.5: Embedded Associations 124 ..
Section 26.6: Database Calls 125 ..

Chapter 27: Gems 126 ...
Section 27.1: Gemfiles 126 ..
Section 27.2: What is a gem? 126 ...
Section 27.3: Bundler 127 ..
Section 27.4: Gemsets 127 ...

Chapter 28: Change default timezone 130 ..
Section 28.1: Change Rails timezone AND have Active Record store times in this timezone 130
Section 28.2: Change Rails timezone, but continue to have Active Record save in the database in UTC

130 ...

Chapter 29: Asset Pipeline 131 ..
Section 29.1: Manifest Files and Directives 131 ...
Section 29.2: Rake tasks 132 ...
Section 29.3: Basic Usage 132 ..

Chapter 30: Upgrading Rails 133 ..
Section 30.1: Upgrading from Rails 4.2 to Rails 5.0 133 ...

Chapter 31: ActiveRecord Locking 135 ...
Section 31.1: Optimistic Locking 135 ..
Section 31.2: Pessimistic Locking 135 ...

Chapter 32: Debugging 136 ..
Section 32.1: Debugging Rails Application 136 ..
Section 32.2: Debugging Ruby on Rails Quickly + Beginner advice 136 ..
Section 32.3: Debugging ruby-on-rails application with pry 138 ..
Section 32.4: Debugging in your IDE 139 ...

Chapter 33: Configure Angular with Rails 141 ..
Section 33.1: Angular with Rails 101 141 ..

Chapter 34: Rails logger 144 ...
Section 34.1: Rails.logger 144 ..

Chapter 35: Prawn PDF 145 ..
Section 35.1: Advanced Example 145 ...
Section 35.2: Basic Example 146 ...

Chapter 36: Rails API 147 ...
Section 36.1: Creating an API-only application 147 ...

Chapter 37: Deploying a Rails app on Heroku 148 ..
Section 37.1: Deploying your application 148 ..
Section 37.2: Managing Production and staging environments for a Heroku 150 ...

Chapter 38: ActiveSupport 152 ..
Section 38.1: Core Extensions: String Access 152 ..
Section 38.2: Core Extensions: String to Date/Time Conversion 153 ...
Section 38.3: Core Extensions: String Exclusion 153 ..
Section 38.4: Core Extensions: String Filters 153 ...
Section 38.5: Core Extensions: String Inflection 155 ..

Chapter 39: Form Helpers 158 ..

Section 39.1: Creating a search form 158 ..
Section 39.2: Dropdown 158 ..
Section 39.3: Helpers for form elements 158 ..

Chapter 40: ActiveRecord Transactions 161 ..
Section 40.1: Basic example 161 ...
Section 40.2: Dierent ActiveRecord classes in a single transaction 161 ..
Section 40.3: Multiple database connections 161 ...
Section 40.4: save and destroy are automatically wrapped in a transaction 161 ...
Section 40.5: Callbacks 162 ...
Section 40.6: Rolling back a transaction 162 ..

Chapter 41: RSpec and Ruby on Rails 163 ...
Section 41.1: Installing RSpec 163 ..

Chapter 42: Decorator pattern 164 ..
Section 42.1: Decorating a Model using Draper 164 ...
Section 42.2: Decorating a Model using SimpleDelegator 164 ...

Chapter 43: Elasticsearch 166 ..
Section 43.1: Searchkick 166 ..
Section 43.2: Installation and testing 166 ..
Section 43.3: Setting up tools for development 167 ...
Section 43.4: Introduction 167 ...

Chapter 44: React with Rails using react-rails gem 168 ..
Section 44.1: React installation for Rails using rails_react gem 168 ...
Section 44.2: Using react_rails within your application 168 ..
Section 44.3: Rendering & mounting 169 ...

Chapter 45: Rails Cookbook - Advanced rails recipes/learnings and coding techniques
170 ..

Section 45.1: Playing with Tables using rails console 170 ..
Section 45.2: Rails methods - returning boolean values 170 ...
Section 45.3: Handling the error - undefined method `where' for #<Array:0x000000071923f8> 171

Chapter 46: Multipurpose ActiveRecord columns 172 ...
Section 46.1: Saving an object 172 ..
Section 46.2: How To 172 ..

Chapter 47: Class Organization 173 ..
Section 47.1: Service Class 173 ..
Section 47.2: Model Class 175 ...

Chapter 48: Shallow Routing 176 ...
Section 48.1: Use of shallow 176 ...

Chapter 49: Model states: AASM 177 ..
Section 49.1: Basic state with AASM 177 ..

Chapter 50: Rails 5 API Authetication 179 ..
Section 50.1: Authentication with Rails authenticate_with_http_token 179 ..

Chapter 51: Testing Rails Applications 180 ...
Section 51.1: Unit Test 180 ..
Section 51.2: Request Test 180 ..

Chapter 52: Active Jobs 181 ..
Section 52.1: Introduction 181 ..
Section 52.2: Sample Job 181 ...
Section 52.3: Creating an Active Job via the generator 181 ...

Chapter 53: Rails frameworks over the years 182 ..
Section 53.1: How to find what frameworks are available in the current version of Rails? 182
Section 53.2: Rails versions in Rails 1.x 182 ..
Section 53.3: Rails frameworks in Rails 2.x 182 ...
Section 53.4: Rails frameworks in Rails 3.x 182 ...

Chapter 54: Nested form in Ruby on Rails 183 ...
Section 54.1: How to setup a nested form in Ruby on Rails 183 ...

Chapter 55: Factory Girl 184 ...
Section 55.1: Defining Factories 184 ...

Chapter 56: Import whole CSV files from specific folder 185 ..
Section 56.1: Uploads CSV from console command 185 ..

Chapter 57: Tools for Ruby on Rails code optimization and cleanup 186 ...
Section 57.1: If you want to keep your code maintainable, secure and optimized, look at some gems for

code optimization and cleanup : 186 ...

Chapter 58: ActiveJob 187 ..
Section 58.1: Create the Job 187 ...
Section 58.2: Enqueue the Job 187 ..

Chapter 59: Active Model Serializers 188 ..
Section 59.1: Using a serializer 188 ...

Chapter 60: Rails Engine - Modular Rails 189 ...
Section 60.1: Create a modular app 189 ..

Chapter 61: Single Table Inheritance 192 ..
Section 61.1: Basic example 192 ..
Section 61.2: Custom inheritance column 192 ...
Section 61.3: Rails model with type column and without STI 193 ..

Chapter 62: ActiveRecord Transactions 194 ...
Section 62.1: Getting Started with Active Record Transactions 194 ..

Chapter 63: Turbolinks 195 ...
Section 63.1: Binding to turbolink's concept of a page load 195 ...
Section 63.2: Disable turbolinks on specific links 195 ...
Section 63.3: Understanding Application Visits 196 ..
Section 63.4: Cancelling visits before they begin 196 ...
Section 63.5: Persisting elements across page loads 197 ..

Chapter 64: Friendly ID 198 ...
Section 64.1: Rails Quickstart 198 ...

Chapter 65: Securely storing authentication keys 200 ..
Section 65.1: Storing authentication keys with Figaro 200 ...

Chapter 66: Authenticate Api using Devise 201 ...
Section 66.1: Getting Started 201 ..

Chapter 67: Integrating React.js with Rails Using Hyperloop 203 ...
Section 67.1: Adding a simple react component (written in ruby) to your Rails app 203 ...
Section 67.2: Callbacks 203 ...
Section 67.3: Declaring component parameters (props) 203 ...
Section 67.4: HTML Tags 204 ..
Section 67.5: Event Handlers 204 ..
Section 67.6: States 204 ...

Chapter 68: Change a default Rails application enviornment 205 ...
Section 68.1: Running on a local machine 205 ..

Section 68.2: Running on a server 205 ...

Chapter 69: Rails -Engines 206 ...
Section 69.1: Famous examples are 206 ..

Chapter 70: Adding an Amazon RDS to your rails application 207 ...
Section 70.1: Consider we are connecting MYSQL RDS with your rails application 207 ...

Chapter 71: Payment feature in rails 208 ...
Section 71.1: How to integrate with Stripe 208 ...

Chapter 72: Rails on docker 210 ..
Section 72.1: Docker and docker-compose 210 ..

Appendix A: Reserved Words 212 ...
Section A.1: Reserved Word List 212 ..

Credits 218 ..

You may also like 222 ..

GoalKicker.com – Ruby® on Rails Notes for Professionals 1

About

Please feel free to share this PDF with anyone for free,
latest version of this book can be downloaded from:

https://goalkicker.com/RubyOnRailsBook

This Ruby® on Rails Notes for Professionals book is compiled from Stack Overflow
Documentation, the content is written by the beautiful people at Stack Overflow.
Text content is released under Creative Commons BY-SA, see credits at the end

of this book whom contributed to the various chapters. Images may be copyright
of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not
affiliated with official Ruby® on Rails group(s) or company(s) nor Stack Overflow.

All trademarks and registered trademarks are the property of their respective
company owners

The information presented in this book is not guaranteed to be correct nor
accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

https://goalkicker.com/RubyOnRailsBook
https://archive.org/details/documentation-dump.7z
https://archive.org/details/documentation-dump.7z
mailto:web@petercv.com
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 2

Chapter 1: Getting started with Ruby on
Rails
Version Release Date
5.1.5 2018-02-14

5.1.2 2017-06-26

5.0 2016-06-30

4.2 2014-12-19

4.1 2014-04-08

4.0 2013-06-25

3.2 2012-01-20

3.1 2011-08-31

3.0 2010-08-29

2.3 2009-03-16

2.0 2007-12-07

1.2 2007-01-19

1.1 2006-03-28

1.0 2005-12-13

Section 1.1: Creating a Ruby on Rails Application
This example assumes Ruby and Ruby on Rails have already been installed properly. If not, you can find how to do it
in Section 1.4: Installing Rails.

Open up a command line or terminal. To generate a new rails application, use rails new command followed by the
name of your application:

$ rails new my_app

If you want to create your Rails application with a specific Rails version then you can specify it at the time of
generating the application. To do that, use rails _version_ new followed by the application name:

$ rails _4.2.0_ new my_app

This will create a Rails application called MyApp in a my_app directory and install the gem dependencies that are
already mentioned in Gemfile using bundle install.

To switch to your newly created app's directory, use the cd command, which stands for change directory.

$ cd my_app

The my_app directory has a number of auto-generated files and folders that make up the structure of a Rails
application. Following is a list of files and folders that are created by default:

File/Folder Purpose
app/ Contains the controllers, models, views, helpers, mailers and assets for your application.

bin/ Contains the rails script that starts your app and can contain other scripts you use to setup,
update, deploy or run your application.

config/ Configure your application's routes, database, and more.

http://weblog.rubyonrails.org/2018/2/14/Rails-5-1-5-has-been-released/
http://weblog.rubyonrails.org/2016/6/30/Rails-5-0-final/
http://weblog.rubyonrails.org/2016/6/30/Rails-5-0-final/
http://weblog.rubyonrails.org/2014/12/19/Rails-4-2-final/
http://weblog.rubyonrails.org/2014/4/8/Rails-4-1/
http://weblog.rubyonrails.org/2013/6/25/Rails-4-0-final/
http://weblog.rubyonrails.org/2012/1/20/rails-3-2-0-faster-dev-mode-routing-explain-queries-tagged-logger-store/
http://weblog.rubyonrails.org/2011/8/31/rails-3-1-0-has-been-released/
http://weblog.rubyonrails.org/2010/8/29/rails-3-0-it-s-done/
http://weblog.rubyonrails.org/2009/3/16/rails-2-3-templates-engines-rack-metal-much-more/
http://weblog.rubyonrails.org/2007/12/7/rails-2-0-it-s-done/
http://weblog.rubyonrails.org/2007/1/19/rails-1-2-rest-admiration-http-lovefest-and-utf-8-celebrations/
http://weblog.rubyonrails.org/2006/3/28/rails-1-1-rjs-active-record-respond_to-integration-tests-and-500-other-things/
http://weblog.rubyonrails.org/2005/12/13/rails-1-0-party-like-its-one-oh-oh/
http://guides.rubyonrails.org/command_line.html#rails-new
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 3

config.ru Rack configuration for Rack based servers used to start the application.

db/ Contains your current database schema, as well as the database migrations.

Gemfile Gemfile.lock These files allow you to specify what gem dependencies are needed for your Rails
application. These files are used by the Bundler gem.

lib/ Extended modules for your application.

log/ Application log files.

public/ The only folder seen by the world as-is. Contains static files and compiled assets.

Rakefile This file locates and loads tasks that can be run from the command line. The task definitions
are defined throughout the components of Rails.

README.md This is a brief instruction manual for your application. You should edit this file to tell others
what your application does, how to set it up etc

test/ Unit tests, fixtures, and other test apparatus.

temp/ Temporary files (like cache and pid files).

vendor/ A place for all third-party code. In a typical Rails application this includes vendored gems.

Now you need to create a database from your database.yml file:

Version ≥ 5.0

rake db:create
OR
rails db:create
Version < 5.0

rake db:create

Now that we've created the database, we need to run migrations to set up the tables:

Version ≥ 5.0

rake db:migrate
OR
rails db:migrate
Version < 5.0

rake db:migrate

To start the application, we need to fire up the server:

$ rails server
OR
$ rails s

By default, rails will start the application at port 3000. To start the application with different port number, we need
to fire up the server like,

$ rails s -p 3010

If you navigate to http://localhost:3000 in your browser, you will see a Rails welcome page, showing that your
application is now running.

If it throws an error, there may be several possible problems:

There is a problem with the config/database.yml
You have dependencies in your Gemfile that have not been installed.
You have pending migrations. Run rails db:migrate
In case you move to the previous migration rails db:rollback

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 4

If that still throws an error, then you should check your config/database.yml

Section 1.2: Create a new Rails app with your choice of
database and including the RSpec Testing Tool
Rails uses sqlite3 as the default database, but you can generate a new rails application with a database of your
choice. Just add the -d option followed by the name of the database.

$ rails new MyApp -T -d postgresql

This is a (non-exhaustive) list of available database options:

mysql
oracle
postgresql
sqlite3
frontbase
ibm_db
sqlserver
jdbcmysql
jdbcsqlite3
jdbcpostgresql
jdbc

The -T command indicate to skip the installation of minitest. To install an alternative test suite like RSpec, edit the
Gemfile and add

group :development, :test do
 gem 'rspec-rails',
end

Then launch the following command from the console:

rails generate rspec:install

Section 1.3: Generating A Controller
To generate a controller (for example Posts), navigate to your project directory from a command line or terminal,
and run:

$ rails generate controller Posts

You can shorten this code by replacing generate with g, for example:

$ rails g controller Posts

If you open up the newly generated app/controllers/posts_controller.rb you'll see a controller with no actions:

class PostsController < ApplicationController
 # empty
end

It's possible to create default methods for the controller by passing in controller name arguments.

http://rspec.info/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 5

$ rails g controller ControllerName method1 method2

To create a controller within a module, specify the controller name as a path like parent_module/controller_name.
For example:

$ rails generate controller CreditCards open debit credit close
OR
$ rails g controller CreditCards open debit credit close

This will generate the following files:

Controller: app/controllers/credit_cards_controller.rb
Test: test/controllers/credit_cards_controller_test.rb
Views: app/views/credit_cards/debit.html.erb [...etc]
Helper: app/helpers/credit_cards_helper.rb

A controller is simply a class that is defined to inherit from ApplicationController.

It's inside this class that you'll define methods that will become the actions for this controller.

Section 1.4: Installing Rails
Installing Rails on Ubuntu

On a clean ubuntu, installation of Rails should be straight forward

Upgrading ubuntu packages

sudo apt-get update
sudo apt-get upgrade

Install Ruby and Rails dependecies

sudo apt-get install git-core curl zlib1g-dev build-essential libssl-dev libreadline-dev libyaml-
dev libsqlite3-dev sqlite3 libxml2-dev libxslt1-dev libcurl4-openssl-dev python-software-properties
libffi-dev

Installing ruby version manager. In this case the easy one is using rbenv

git clone https://github.com/rbenv/rbenv.git ~/.rbenv
echo 'export PATH="$HOME/.rbenv/bin:$PATH"' >> ~/.bashrc
echo 'eval "$(rbenv init -)"' >> ~/.bashrc

Installing Ruby Build

git clone https://github.com/rbenv/ruby-build.git ~/.rbenv/plugins/ruby-build
echo 'export PATH="$HOME/.rbenv/plugins/ruby-build/bin:$PATH"' >> ~/.bashrc

Restart Shell

exec $SHELL

Install ruby

rbenv install 2.3.1

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 6

rbenv global 2.3.1
rbenv rehash

Installing rails

gem install rails

Installing Rails on Windows

Step 1: Installing Ruby

We need Ruby programming language installed. We can use a precompiled version of Ruby called RubyInstaller.

Download and run Ruby Installer from rubyinstaller.org.
Run the installer. Check "Add Ruby executables to your PATH", then install.
To access Ruby, go to the Windows menu, click All Programs, scroll down to Ruby, and click “Start Command
Prompt with Ruby”. A command prompt terminal will open. If you type ruby -v and press Enter, you should
see the Ruby version number that you installed.

Step 2: Ruby Development Kit

After installing Ruby, we can try to install Rails. But some of the libraries Rails depends on need some build tools in
order to be compiled, and Windows lacks those tools by default. You can identify this if you see an error while
attempting to install Rails Gem::InstallError: The ‘[gem name]’ native gem requires installed build tools.
To fix this, we need to install the Ruby Development Kit.

Download the DevKit
Run the installer.
We need to specify a folder where we’re going to permanently install the DevKit. I recommend installing it in
the root of your hard drive, at C:\RubyDevKit. (Don’t use spaces in the directory name.)

Now we need to make the DevKit tools available to Ruby.

In your command prompt, change to the DevKit directory. cd C:\RubyDevKit or whatever directory you
installed it in.
We need to run a Ruby script to initialize the DevKit setup. Type ruby dk.rb init. Now we’ll tell that same
script to add the DevKit to our Ruby installation. Type ruby dk.rb install.

The DevKit should now be available for your Ruby tools to use when installing new libraries.

Step 3: Rails

Now we can install Rails. Rails comes as a Ruby gem. In your command prompt, type:

gem install rails

Once you press Enter, the gem program will download and install that version of the Rails gem, along with all the
other gems Rails depends on.

Step 4: Node.js

Some libraries that Rails depends on require a JavaScript runtime to be installed. Let’s install Node.js so that those
libraries work properly.

Download the Node.js installer from here.

http://rubyinstaller.org/
http://rubyinstaller.org/downloads/
https://nodejs.org/en/download/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 7

When the download completes, visit your downloads folder, and run the node-v4.4.7.pkg installer.
Read the full license agreement, accept the terms, and click Next through the rest of the wizard, leaving
everything at the default.
A window may pop up asking if you want to allow the app to make changes to your computer. Click “Yes”.
When the installation is complete, you’ll need to restart your computer so Rails can access Node.js.

Once your computer restarts, don’t forget to go to the Windows menu, click “All Programs”, scroll down to Ruby,
and click “Start Command Prompt with Ruby”.

Section 1.5: Create a new Rails app with a non-standard
database adapter
Rails is shipped by default with ActiveRecord, an ORM (Object Relational Mapping) derived from the pattern with
the same name.

As an ORM, it is built to handle relational-mapping, and more precisely by handling SQL requests for you, hence the
limitation to SQL databases only.

However, you can still create a Rails app with another database management system:

simply create your app without active-record1.

$ rails app new MyApp --skip-active-record

add your own database management system in Gemfile2.

gem 'mongoid', '~> 5.0'

bundle install and follow the installation steps from the desired database.3.

In this example, mongoid is an object mapping for MongoDB and - as many other database gems built for rails - it also
inherits from ActiveModel the same way as ActiveRecord, which provides a common interface for many features
such as validations, callbacks, translations, etc.

Other database adapters include, but are not limited to :

datamapper

sequel-rails

Section 1.6: Creating Rails APIs in JSON
This example assumes that you have experience in creating Rails applications.

To create an API-only app in Rails 5, run

rails new name-of-app --api

Add active_model_serializers in Gemfile

gem 'active_model_serializers'

install bundle in terminal

https://en.wikipedia.org/wiki/Active_record_pattern
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 8

bundle install

Set the ActiveModelSerializer adapter to use :json_api

config/initializers/active_model_serializer.rb
ActiveModelSerializers.config.adapter = :json_api
Mime::Type.register "application/json", :json, %w(text/x-json application/jsonrequest
application/vnd.api+json)

Generate a new scaffold for your resource

rails generate scaffold Task name:string description:text

This will generate the following files:

Controller: app/controllers/tasks_controller.rb

Test: test/models/task_test.rb
 test/controllers/tasks_controller_test.rb
Routes: resources :tasks added in routes.rb
Migration: db/migrate/_create_tasks.rb
Model: app/models/task.rb
Serializer: app/serializers/task_serializer.rb
Controller: app/controllers/tasks_controller.rb

Section 1.7: Generate a Resource with Scaolds
From guides.rubyonrails.org:

Instead of generating a model directly . . . let's set up a scaffold. A scaffold in Rails is a full set of model,
database migration for that model, controller to manipulate it, views to view and manipulate the data,
and a test suite for each of the above.

Here's an example of scaffolding a resource called Task with a string name and a text description:

rails generate scaffold Task name:string description:text

This will generate the following files:

Controller: app/controllers/tasks_controller.rb
Test: test/models/task_test.rb
 test/controllers/tasks_controller_test.rb
Routes: resources :tasks added in routes.rb
Views: app/views/tasks
 app/views/tasks/index.html.erb
 app/views/tasks/edit.html.erb
 app/views/tasks/show.html.erb
 app/views/tasks/new.html.erb
 app/views/tasks/_form.html.erb
Helper: app/helpers/tasks_helper.rb
JS: app/assets/javascripts/tasks.coffee
CSS: app/assets/stylesheets/tasks.scss
 app/assets/stylesheets/scaffolds.scss

example to delete files generated by scaffold for the resource called Task

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 9

rails destroy scaffold Task

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 10

Chapter 2: Routing
The Rails router recognizes URLs and dispatches them to a controller's action. It can also generate paths and URLs,
avoiding the need to hardcode strings in your views.

Section 2.1: Resource Routing (Basic)
Routes are defined in config/routes.rb. They are often defined as a group of related routes, using the resources
or resource methods.

resources :users creates the following seven routes, all mapping to actions of UsersController:

get '/users', to: 'users#index'
post '/users', to: 'users#create'
get '/users/new', to: 'users#new'
get '/users/:id/edit', to: 'users#edit'
get '/users/:id', to: 'users#show'
patch/put '/users/:id', to: 'users#update'
delete '/users/:id', to: 'users#destroy'

Action names are shown after the # in the to parameter above. Methods with those same names must be defined
in app/controllers/users_controller.rb as follows:

class UsersController < ApplicationController
 def index
 end

 def create
 end

 # continue with all the other methods…
end

You can limit the actions that gets generated with only or except:

resources :users, only: [:show]
resources :users, except: [:show, :index]

You can view all the routes of your application at any given time by running:

Version < 5.0

$ rake routes
Version ≥ 5.0

$ rake routes
OR
$ rails routes

users GET /users(.:format) users#index
 POST /users(.:format) users#create
new_user GET /users/new(.:format) users#new
edit_user GET /users/:id/edit(.:format) users#edit
user GET /users/:id(.:format) users#show
 PATCH /users/:id(.:format) users#update
 PUT /users/:id(.:format) users#update
 DELETE /users/:id(.:format) users#destroy

http://api.rubyonrails.org/classes/ActionDispatch/Routing/Mapper/Resources.html#method-i-resources
http://api.rubyonrails.org/classes/ActionDispatch/Routing/Mapper/Resources.html#method-i-resource
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 11

To see only the routes that map to a particular controller:

Version < 5.0

$ rake routes -c static_pages
static_pages_home GET /static_pages/home(.:format) static_pages#home
static_pages_help GET /static_pages/help(.:format) static_pages#help
Version ≥ 5.0

$ rake routes -c static_pages
static_pages_home GET /static_pages/home(.:format) static_pages#home
static_pages_help GET /static_pages/help(.:format) static_pages#help

OR

$ rails routes -c static_pages
static_pages_home GET /static_pages/home(.:format) static_pages#home
static_pages_help GET /static_pages/help(.:format) static_pages#help

You can search through routes using the -g option. This shows any route that partially matches the helper method
name, the URL path or the HTTP verb:

Version < 5.0

$ rake routes -g new_user # Matches helper method
$ rake routes -g POST # Matches HTTP Verb POST
Version ≥ 5.0

$ rake routes -g new_user # Matches helper method
$ rake routes -g POST # Matches HTTP Verb POST
OR
$ rails routes -g new_user # Matches helper method
$ rails routes -g POST # Matches HTTP Verb POST

Additionally, when running rails server in development mode, you can access a web page that shows all your
routes with a search filter, matched in priority from top to bottom, at <hostname>/rails/info/routes. It will look
like this:

Helper HTTP Verb Path Controller#Action
Path / Url [Path Match]

users_path GET /users(.:format) users#index

POST /users(.:format) users#create

new_user_path GET /users/new(.:format) users#new

edit_user_path GET /users/:id/edit(.:format) users#edit

user_path GET /users/:id(.:format) users#show

PATCH /users/:id(.:format) users#update

PUT /users/:id(.:format) users#update

DELETE /users/:id(.:format) users#destroy

Routes can be declared available for only members (not collections) using the method resource instead of
resources in routes.rb. With resource, an index route is not created by default, but only when explicitly asking for
one like this:

resource :orders, only: [:index, :create, :show]

Section 2.2: Constraints
You can filter what routes are available using constraints.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 12

There are several ways to use constraints including:

segment constraints,
request based constraints
advanced constraints

For example, a requested based constraint to only allow a specific IP address to access a route:

constraints(ip: /127\.0\.0\.1$/) do
 get 'route', to: "controller#action"
end

See other similar examples ActionDispatch::Routing::Mapper::Scoping.

If you want to do something more complex you can use more advanced constraints and create a class to wrap the
logic:

lib/api_version_constraint.rb
class ApiVersionConstraint
 def initialize(version:, default:)
 @version = version
 @default = default
 end

 def version_header
 "application/vnd.my-app.v#{@version}"
 end

 def matches?(request)
 @default || request.headers["Accept"].include?(version_header)
 end
end

config/routes.rb
require "api_version_constraint"

Rails.application.routes.draw do
 namespace :v1, constraints: ApiVersionConstraint.new(version: 1, default: true) do
 resources :users # Will route to app/controllers/v1/users_controller.rb
 end

 namespace :v2, constraints: ApiVersionConstraint.new(version: 2) do
 resources :users # Will route to app/controllers/v2/users_controller.rb
 end
end

One form, several submit buttons

You can also use the value of the submit tags of a form as a constraint to route to a different action. If you have a
form with multiple submit buttons (eg "preview" and "submit"), you could capture this constraint directly in your
routes.rb, instead of writing javascript to change the form destination URL. For example with the
commit_param_routing gem you can take advantage of rails submit_tag

Rails submit_tag first parameter lets you change the value of your form commit parameter

app/views/orders/mass_order.html.erb
<%= form_for(@orders, url: mass_create_order_path do |f| %>
 <!-- Big form here -->

http://guides.rubyonrails.org/routing.html#segment-constraints
http://guides.rubyonrails.org/routing.html#request-based-constraints
http://guides.rubyonrails.org/routing.html#advanced-constraints
http://api.rubyonrails.org/classes/ActionDispatch/Routing/Mapper/Scoping.html
https://github.com/siliconsenthil/commit_param_routing
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 13

 <%= submit_tag "Preview" %>
 <%= submit_tag "Submit" %>
 # => <input name="commit" type="submit" value="Preview" />
 # => <input name="commit" type="submit" value="Submit" />
 ...
<% end %>

config/routes.rb
resources :orders do
 # Both routes below describe the same POST URL, but route to different actions
 post 'mass_order', on: :collection, as: 'mass_order',
 constraints: CommitParamRouting.new('Submit'), action: 'mass_create' # when the user presses
"submit"
 post 'mass_order', on: :collection,
 constraints: CommitParamRouting.new('Preview'), action: 'mass_create_preview' # when the user
presses "preview"
 # Note the `as:` is defined only once, since the path helper is mass_create_order_path for the form
url
 # CommitParamRouting is just a class like ApiVersionContraint
end

Section 2.3: Scoping routes
Rails provides several ways to organize your routes.

Scope by URL:

scope 'admin' do
 get 'dashboard', to: 'administration#dashboard'
 resources 'employees'
end

This generates the following routes

get '/admin/dashboard', to: 'administration#dashboard'
post '/admin/employees', to: 'employees#create'
get '/admin/employees/new', to: 'employees#new'
get '/admin/employees/:id/edit', to: 'employees#edit'
get '/admin/employees/:id', to: 'employees#show'
patch/put '/admin/employees/:id', to: 'employees#update'
delete '/admin/employees/:id', to: 'employees#destroy'

It may make more sense, on the server side, to keep some views in a different subfolder, to separate admin views
from user views.

Scope by module

scope module: :admin do
 get 'dashboard', to: 'administration#dashboard'
end

module looks for the controller files under the subfolder of the given name

get '/dashboard', to: 'admin/administration#dashboard'

You can rename the path helpers prefix by adding an as parameter

scope 'admin', as: :administration do

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 14

 get 'dashboard'
end

=> administration_dashboard_path

Rails provides a convenient way to do all the above, using the namespace method. The following declarations are
equivalent

namespace :admin do
end

scope 'admin', module: :admin, as: :admin

Scope by controller

scope controller: :management do
 get 'dashboard'
 get 'performance'
end

This generate these routes

get '/dashboard', to: 'management#dashboard'
get '/performance', to: 'management#performance'

Shallow Nesting

Resource routes accept a :shallow option that helps to shorten URLs where possible. Resources shouldn't be
nested more than one level deep. One way to avoid this is by creating shallow routes. The goal is to leave off parent
collection URL segments where they are not needed. The end result is that the only nested routes generated are for
the :index , :create , and :new actions. The rest are kept in their own shallow URL context. There are two options
for scope to custom shallow routes:

:shallow_path: Prefixes member paths with a specified parameter

scope shallow_path: "sekret" do
 resources :articles do
 resources :comments, shallow: true
 end
end

:shallow_prefix: Add specified parameters to named helpers

scope shallow_prefix: "sekret" do
 resources :articles do
 resources :comments, shallow: true
 end
end

We can also illustrate shallow routes more by:

resources :auctions, shallow: true do
 resources :bids do
 resources :comments
 end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 15

end

alternatively coded as follows (if you’re block-happy):

resources :auctions do
 shallow do
 resources :bids do
 resources :comments
 end
 end
end

The resulting routes are:

Prefix Verb URI Pattern
bid_comments GET /bids/:bid_id/comments(.:format)

POST /bids/:bid_id/comments(.:format)

new_bid_comment GET /bids/:bid_id/comments/new(.:format)

edit_comment GET /comments/:id/edit(.:format)

comment GET /comments/:id(.:format)

PATCH /comments/:id(.:format)

PUT /comments/:id(.:format)

DELETE /comments/:id(.:format)

auction_bids GET /auctions/:auction_id/bids(.:format)

POST /auctions/:auction_id/bids(.:format)

new_auction_bid GET /auctions/:auction_id/bids/new(.:format)

edit_bid GET /bids/:id/edit(.:format)

bid GET /bids/:id(.:format)

PATCH /bids/:id(.:format)

PUT /bids/:id(.:format)

DELETE /bids/:id(.:format)

auctions GET /auctions(.:format)

POST /auctions(.:format)

new_auction GET /auctions/new(.:format)

edit_auction GET /auctions/:id/edit(.:format)

auction GET /auctions/:id(.:format)

PATCH /auctions/:id(.:format)

PUT /auctions/:id(.:format)

DELETE /auctions/:id(.:format)

If you analyze the routes generated carefully, you’ll notice that the nested parts of the URL are only included when
they are needed to determine what data to display.

Section 2.4: Concerns
To avoid repetition in nested routes, concerns provide a great way of sharing common resources that are reusable.
To create a concern use the method concern within the routes.rb file. The method expects a symbol and block:

concern :commentable do
 resources :comments

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 16

end

While not creating any routes itself, this code allows using the :concerns attribute on a resource. The simplest
example would be:

resource :page, concerns: :commentable

The equivalent nested resource would look like this:

resource :page do
 resource :comments
end

This would build, for example, the following routes:

/pages/#{page_id}/comments
/pages/#{page_id}/comments/#{comment_id}

For concerns to be meaningful, there must be multiple resources that utilize the concern. Additional resources
could use any of the following syntax to call the concern:

resource :post, concerns: %i(commentable)
resource :blog do
 concerns :commentable
end

Section 2.5: Root route
You can add a home page route to your app with the root method.

config/routes.rb
Rails.application.routes.draw do
 root "application#index"
 # equivalent to:
 # get "/", "application#index"
end

app/controllers/application_controller.rb
class ApplicationController < ActionController::Base
 def index
 render "homepage"
 end
end

And in terminal, rake routes (rails routes in Rails 5) will produce:

root GET / application#index

Because the homepage is usually the most important route, and routes are prioritized in the order they appear, the
root route should usually be the first in your routes file.

Section 2.6: Split routes into multiple files
If your routes file is overwhelmingly big, you can put your routes in multiple files and include each of the files with
Ruby’s require_relative method:

http://apidock.com/ruby/Kernel/require_relative
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 17

config/routes.rb:

YourAppName::Application.routes.draw do
 require_relative 'routes/admin_routes'
 require_relative 'routes/sidekiq_routes'
 require_relative 'routes/api_routes'
 require_relative 'routes/your_app_routes'
end

config/routes/api_routes.rb:

YourAppName::Application.routes.draw do
 namespace :api do
 # ...
 end
end

Section 2.7: Additional RESTful actions
resources :photos do member do get 'preview' end collection do get 'dashboard' end end

This creates the following routes in addition to default 7 RESTful routes:

get '/photos/:id/preview', to: 'photos#preview'
get '/photos/dashboards', to: 'photos#dashboard'

If you want to do this for single lines, you can use:

resources :photos do get 'preview', on: :member get 'dashboard', on: :collection end

You can also add an action to the /new path:

resources :photos do get 'preview', on: :new end

Which will create:

get '/photos/new/preview', to: 'photos#preview'

Be mindful when adding actions to your RESTful routes, probably you are missing another resource!

Section 2.8: Member and Collection Routes
Defining a member block inside a resource creates a route that can act on an individual member of that resource-
based route:

resources :posts do
 member do
 get 'preview'
 end
end

This generates the following member route:

get '/posts/:id/preview', to: 'posts#preview'
preview_post_path

Collection routes allow for creating routes that can act on a collection of resource objects:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 18

resources :posts do
 collection do
 get 'search'
 end
end

This generates the following collection route:

get '/posts/search', to: 'posts#search'
search_posts_path

An alternate syntax:

resources :posts do
 get 'preview', on: :member
 get 'search', on: :collection
end

Section 2.9: Mount another application
mount is used to mount another application (basically rack application) or rails engines to be used within the
current application

syntax:

mount SomeRackApp, at: "some_route"

Now you can access above mounted application using route helper some_rack_app_path or some_rack_app_url.

But if you want to rename this helper name you can do it as:

mount SomeRackApp, at: "some_route", as: :myapp

This will generate the myapp_path and myapp_url helpers which can be used to navigate to this mounted app.

Section 2.10: Nested Routes
If you want to add nested routes you can write the following code in routes.rb file.

resources :admins do
 resources :employees
end

This will generate following routes:

 admin_employees GET /admins/:admin_id/employees(.:format) employees#index
 POST /admins/:admin_id/employees(.:format) employees#create
 new_admin_employee GET /admins/:admin_id/employees/new(.:format) employees#new
 edit_admin_employee GET /admins/:admin_id/employees/:id/edit(.:format) employees#edit
 admin_employee GET /admins/:admin_id/employees/:id(.:format) employees#show
 PATCH /admins/:admin_id/employees/:id(.:format) employees#update
 PUT /admins/:admin_id/employees/:id(.:format) employees#update
 DELETE /admins/:admin_id/employees/:id(.:format) employees#destroy
 admins GET /admins(.:format) admins#index
 POST /admins(.:format) admins#create
 new_admin GET /admins/new(.:format) admins#new

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 19

 edit_admin GET /admins/:id/edit(.:format) admins#edit
 admin GET /admins/:id(.:format) admins#show
 PATCH /admins/:id(.:format) admins#update
 PUT /admins/:id(.:format) admins#update
 DELETE /admins/:id(.:format) admins#destroy

Section 2.11: Redirection
You can perform redirection in Rails routes as follows:

Version ≥ 4.0

get '/stories', to: redirect('/posts')
Version < 4.0

match "/abc" => redirect("http://example.com/abc")

You can also redirect all unknown routes to a given path:

Version ≥ 4.0

match '*path' => redirect('/'), via: :get
or
get '*path' => redirect('/')
Version < 4.0

match '*path' => redirect('/')

Section 2.12: Redirects and Wildcard Routes
If you want to provide a URL out of convenience for your user but map it directly to another one you're already
using. Use a redirect:

config/routes.rb
TestApp::Application.routes.draw do
 get 'courses/:course_name' => redirect('/courses/%{course_name}/lessons'), :as => "course"
end

Well, that got interesting fast. The basic principle here is to just use the #redirect method to send one route to
another route. If your route is quite simple, it's a really straightforward method. But if you want to also send the
original parameters, you need to do a bit of gymnastics by capturing the parameter inside %{here}. Note the single
quotes around everything.

In the example above, we've also renamed the route for convenience by using an alias with the :as parameter. This
lets us use that name in methods like the #_path helpers. Again, test out your $ rake routes with questions.

Section 2.13: Scope available locales
If your application is available in different languages, you usually show the current locale in the URL.

scope '/(:locale)', locale: /#{I18n.available_locales.join('|')}/ do
 root 'example#root'
 # other routes
end

Your root will be accessible via the locales defined in I18n.available_locales.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 20

Section 2.14: URL params with a period
If you want to support a url parameter more complex than an id number, you may run into trouble with the parser
if the value contains a period. Anything following a period will be assumed to be a format (i.e. json, xml).

You can work around this limitation by using a constraint to broaden the accepted input.

For example, if you want to reference a user record by email address in the url:

resources :users, constraints: { id: /.*/ }

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 21

Chapter 3: ActiveRecord
Section 3.1: Creating a Model via generator
Ruby on Rails provides a model generator you can use to create ActiveRecord models. Simply use rails generate
model and provide the model name.

$ rails g model user

In addition to the model file in app/models, the generator will also create:

the Test in test/models/user_test.rb
the Fixtures in test/fixtures/users.yml
the database Migration in db/migrate/XXX_create_users.rb

You can also generate some fields for the model when generating it.

$ rails g model user email:string sign_in_count:integer birthday:date

This will create the columns email, sign_in_count and birthday in your database, with the appropriate types.

Section 3.2: Introduction to Callbacks
A callback is a method that gets called at specific moments of an object's lifecycle (right before or after creation,
deletion, update, validation, saving or loading from the database).

For instance, say you have a listing that expires within 30 days of creation.

One way to do that is like this:

class Listing < ApplicationRecord
 after_create :set_expiry_date

 private

 def set_expiry_date
 expiry_date = Date.today + 30.days
 self.update_column(:expires_on, expiry_date)
 end
end

All of the available methods for callbacks are as follows, in the same order that they are called during the operation
of each object:

Creating an Object

before_validation
after_validation
before_save
around_save
before_create
around_create
after_create
after_save

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 22

after_commit/after_rollback

Updating an Object

before_validation
after_validation
before_save
around_save
before_update
around_update
after_update
after_save
after_commit/after_rollback

Destroying an Object

before_destroy
around_destroy
after_destroy
after_commit/after_rollback

NOTE: after_save runs both on create and update, but always after the more specific callbacks after_create and
after_update, no matter the order in which the macro calls were executed.

Section 3.3: Creating a Model manually
While using scaffolding is a fast and easy if you are new to Rails or you are creating a new application, later it can be
useful just to do it on your own ato avoid the need to go through the scaffold-generated code to slim it down
(remove unused parts, etc.).

Creating a model can be as simple as creating a file under app/models.

The most simple model, in ActiveRecord, is a class that extends ActiveRecord::Base.

class User < ActiveRecord::Base
end

Model files are stored in app/models/, and the file name corresponds to the singular name of the class:

user
app/models/user.rb

SomeModel
app/models/some_model.rb

The class will inherit all the ActiveRecord features: query methods, validations, callbacks, etc.

Searches the User with ID 1
User.find(1)

Note: Make sure that the table for the corresponding model exists. If not, you can create the table by creating a
Migration

You can generate a model and it's migration by terminal from the following command

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 23

rails g model column_name1:data_type1, column_name2:data_type2, ...

and can also assign foreign key(relationship) to the model by following command

rails g model column_name:data_type, model_name:references

Section 3.4: Manually Testing Your Models
Testing your Active Record models through your command line interface is simple. Navigate to the app directory in
your terminal and type in rails console to start the Rails console. From here, you can run active record methods
on your database.

For example, if you had a database schema with a Users table having a name:string column and email:string, you
could run:

User.create name: "John", email: "john@example.com"

Then, to show that record, you could run:

User.find_by email: "john@example.com"

Or if this is your first or only record, you could simply get the first record by running:

User.first

Section 3.5: Creating A Migration
Add/remove fields in existing tables

Create a migration by running:

rails generate migration AddTitleToCategories title:string

This will create a migration that adds a title column to a categories table:

class AddTitleToCategories < ActiveRecord::Migration[5.0]
 def change
 add_column :categories, :title, :string
 end
end

Similarly, you can generate a migration to remove a column: rails generate migration
RemoveTitleFromCategories title:string

This will create a migration that removes a title column from the categories table:

class RemoveTitleFromCategories < ActiveRecord::Migration[5.0]
 def change
 remove_column :categories, :title, :string
 end
end

While, strictly speaking, specifying type (:string in this case) is not necessary for removing a column, it's helpful,
since it provides the information necessary for rolling it back.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 24

Create a table

Create a migration by running:

rails g CreateUsers name bio

Rails recognizes the intent to create a table from the Create prefix, the rest of the migration name will be used as a
table name. The given example generates the following:

class CreateUsers < ActiveRecord::Migration
 def change
 create_table :users do |t|
 t.string :name
 t.string :bio
 end
 end
end

Notice that the creation command didn't specify types of columns and the default string was used.

Create a join table

Create a migration by running:

rails g CreateJoinTableParticipation user:references group:references

Rails detects the intent to create a join table by finding JoinTable in migration name. Everything else is determined
from the names of the fields you give after the name.

class CreateJoinTableParticipation < ActiveRecord::Migration
 def change
 create_join_table :users, :groups do |t|
 # t.index [:user_id, :group_id]
 # t.index [:group_id, :user_id]
 end
 end
end

Uncomment the necessary index statements and delete the rest.

Precedence

Notice that the example migration name CreateJoinTableParticipation matches the rule for table creation: it has
a Create prefix. But it did not generate a simple create_table. This is because migration generator (source code)
uses a first match of the following list:

(Add|Remove)<ignored>(To|From)<table_name>

<ignored>JoinTable<ignored>

Create<table_name>

Section 3.6: Create a Join Table using Migrations
Specially useful for has_and_belongs_to_many relation, you can manually create a join table using the create_table
method. Suppose you have two models Tags and Proyects, and you'd like to associate them using a

https://github.com/rails/rails/blob/ff044c3c3a0a85d26d7c000abeeed835a3bee0bf/activerecord/lib/rails/generators/active_record/migration/migration_generator.rb#L19
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 25

has_and_belongs_to_many relation. You need a join table to associate instances of both classes.

class CreateProjectsTagsJoinTableMigration < ActiveRecord::Migration
 def change
 create_table :projects_tags, id: false do |t|
 t.integer :project_id
 t.integer :tag_id
 end
 end
end

The actual name of the table needs to follow this convention: the model which alphabetically precedes the other
must go first. Project preceds Tags so the name of the table is projects_tags.

Also since the purpose of this table is to route the association between the instances of two models, the actual id of
every record in this table is not necessary. You specify this by passing id: false

Finally, as is convention in Rails, the table name must be the compound plural form of the individual models, but
the column of the table must be in singular form.

Section 3.7: Using a model instance to update a row
Let's say you have a User model

class User < ActiveRecord::Base
end

Now to update the first_name and last_name of a user with id = 1, you can write the following code.

user = User.find(1)
user.update(first_name: 'Kashif', last_name: 'Liaqat')

Calling update will attempt to update the given attributes in a single transaction, returning true if successful and
false if not.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 26

Chapter 4: Views
Section 4.1: Structure
As Rails follows the MVC pattern Views are where your "templates" are for your actions.

Let's say you have a controller articles_controller.rb. For this controller you would have a folder in views called
app/views/articles:

app
|-- controllers
| '-- articles_controller.rb
|
'-- views
'-- articles
| |- index.html.erb
| |- edit.html.erb
| |- show.html.erb
| |- new.html.erb
| '- _partial_view.html.erb
|
'-- [...]

This structure allows you to have a folder for each controller. When calling an action in your controller the
appropriate view will be rendered automatically.

// articles_controller.rb
class ArticlesController < ActionController::Base
 def show
 end
end

// show.html.erb
<h1>My show view</h1>

Section 4.2: Partials
Partial templates (partials) are a way of breaking the rendering process into more manageable chunks. Partials
allow you to extract pieces of code from your templates to separate files and also reuse them throughout your
templates.

To create a partial, create a new file that begins with an underscore: _form.html.erb

To render a partial as part of a view, use the render method within the view: <%= render "form" %>

Note, the underscore is left out when rendering
A partial has to be rendered using its path if located in a different folder

To pass a variable into the partial as a local variable, use this notation:

<%= render :partial => 'form', locals: { post: @post } %>

Partials are also useful when you need to reuse exactly the same code (DRY philosophy).

For example, to reuse <head> code, create a partial named _html_header.html.erb, enter your <head> code to be

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 27

reused, and render the partial whenever needed by: <%= render 'html_header' %>.

Object Partials

Objects that respond to to_partial_path can also be rendered, as in <%= render @post %>. By default, for
ActiveRecord models, this will be something like posts/post, so by actually rendering @post, the file
views/posts/_post.html.erb will be rendered.

A local named post will be automatically assigned. In the end, <%= render @post %> is a short hand for <%= render
'posts/post', post: @post %>.

Collections of objects that respond to to_partial_path can also be provided, such as <%= render @posts %>. Each
item will be rendered consecutively.

Global Partials

To create a global partial that can be used anywhere without referencing its exact path, the partial has to be located
in the views/application path. The previous example has been modified below to illustrate this feature.

For example, this is a path to a global partial app/views/application/_html_header.html.erb:

To render this global partial anywhere, use <%= render 'html_header' %>

Section 4.3: AssetTagHelper
To let rails automatically and correctly link assets (css/js/images) in most cases you want to use built in helpers.
(Official documentation)

Image helpers
image_path

This returns the path to an image asset in app/assets/images.

image_path("edit.png") # => /assets/edit.png

image_url

This returns the full URL to an image asset in app/assets/images.

image_url("edit.png") # => http://www.example.com/assets/edit.png

image_tag

Use this helper if you want to include an -tag with the source set.

image_tag("icon.png") # =>

JavaScript helpers
javascript_include_tag

If you want to include a JavaScript-file in your view.

javascript_include_tag "application" # => <script src="/assets/application.js"></script>

javascript_path

http://guides.rubyonrails.org/action_view_overview.html#assettaghelper
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 28

This returns the path of your JavaScript-file.

javascript_path "application" # => /assets/application.js

javascript_url

This returns the full URL of your JavaScript-file.

javascript_url "application" # => http://www.example.com/assets/application.js

Stylesheet helpers
stylesheet_link_tag

If you want to include a CSS-file in your view.

stylesheet_link_tag "application" # => <link href="/assets/application.css" media="screen"
rel="stylesheet" />

stylesheet_path

This returns the path of you stylesheet asset.

stylesheet_path "application" # => /assets/application.css

stylesheet_url

This returns the full URL of you stylesheet asset.

stylesheet_url "application" # => http://www.example.com/assets/application.css

Example usage

When creating a new rails app you will automatically have two of these helpers in
app/views/layouts/application.html.erb

<%= stylesheet_link_tag 'application', media: 'all', 'data-turbolinks-track': 'reload' %>
<%= javascript_include_tag 'application', 'data-turbolinks-track': 'reload' %>

This outputs:

// CSS
<link rel="stylesheet" media="all" href="/assets/application.self-
e19d4b856cacba4f6fb0e5aa82a1ba9aa4ad616f0213a1259650b281d9cf6b20.css?body=1" data-turbolinks-
track="reload" />
// JavaScript
<script
src="/assets/application.self-619d9bf310b8eb258c67de7af745cafbf2a98f6d4c7bb6db8e1b00aed89eb0b1.js?b
ody=1" data-turbolinks-track="reload"></script>

Section 4.4: Replace HTML code in Views
If you ever wanted to determine the html content to be printed on a page during run time then, rails has a very
good solution for that. It has something called the content_for which allows us to pass a block to a rails view.
Please check the below example,

Declare content_for

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 29

<div>
 <%= yield :header %>
</div>

<% content_for :header do %>

 Line Item 1
 Line Item 2

<% end %>

Section 4.5: HAML - an alternative way to use in your views
HAML (HTML abstraction markup language) is a beautiful and elegant way to describe and design the HTML of your
views. Instead of opening- and closing tags, HAML uses indentation for the structure of your pages. Basically, if
something should be placed within another element, you just indent it by using one tab stop. Tabs and white space
are important in HAML, so be sure that you always use the same amount of tabs.

Examples:

#myview.html.erb
<h1><%= @the_title %></h1>
<p>This is my form</p>
<%= render "form" %>

And in HAML:

#myview.html.haml
%h1= @the_title
%p
 This is my form
= render 'form'

You see, the structure of the layout is much clearer than using HTML and ERB.

Installation

Just install the gem using

gem install haml

and add the gem to the Gemfile

gem "haml"

For using HAML instead of HTML/ERB, just replace the file extensions of your views from something.html.erb to
something.html.haml.

Quick tipps

Common elements like divs can be written in a short way

HTML

<div class="myclass">My Text</div>

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 30

HAML

%div.myclass

HAML, shorthand

.myclass

Attributes

HTML

<p class="myclass" id="myid">My paragraph</p>

HAML

%p{:class => "myclass", :id => "myid"} My paragraph

Inserting ruby code

You can insert ruby code with the = and - signs.

= link_to "Home", home_path

Code starting with = will be executed and embedded into the document.

Code starting with - will be executed, but not inserted into the document.

Full documentation

HAML is very easy to start with, but is also very complex, so that I'll recommend reading the documentation.

http://haml.info/docs/yardoc/file.REFERENCE.html#using_haml
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 31

Chapter 5: ActiveRecord Migrations
Column type Description
:primary_key Primary key
:string Shorter string datatype. Allows limit option for maximum number of characters.
:text Longer amount of text. Allows limit option for maximum number of bytes.
:integer Integer. Allows limit option for maximum number of bytes.
:bigint Larger integer
:float Float
:decimal Decimal number with variable precision. Allows precision and scale options.
:numeric Allows precision and scale options.
:datetime DateTime object for dates/times.
:time Time object for times.
:date Date object for dates.
:binary Binary data. Allows limit option for maximum number of bytes.
:boolean Boolean

Section 5.1: Adding multiple columns to a table
To add multiple columns to a table, separate field:type pairs with spaces when using rails generate migration
command.

The general syntax is:

rails generate migration NAME [field[:type][:index] field[:type][:index]] [options]

For example, the following will add name, salary and email fields to the users table:

rails generate migration AddDetailsToUsers name:string salary:decimal email:string

Which generates the following migration:

class AddDetailsToUsers < ActiveRecord::Migration[5.0]
 def change
 add_column :users, :name, :string
 add_column :users, :salary, :decimal
 add_column :users, :email, :string
 end
end

Section 5.2: Add a reference column to a table
To add a reference to a team to the users table, run this command:

$ rails generate migration AddTeamRefToUsers team:references

This generates the following migration:

class AddTeamRefToUsers < ActiveRecord::Migration[5.0]
 def change
 add_reference :users, :team, foreign_key: true

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 32

 end
end

That migration will create a team_id column in the users table.

If you want to add an appropriate index and foreign_key on the added column, change the command to rails
generate migration AddTeamRefToUsers team:references:index. This will generate the following migration:

class AddTeamRefToUsers < ActiveRecord::Migration
 def change
 add_reference :users, :team, index: true
 add_foreign_key :users, :teams
 end
end

If you want to name your reference column other than what Rails auto generates, add the following to your
migration: (E.g.: You might want to call the User who created the Post as Author in the Post table)

class AddAuthorRefToPosts < ActiveRecord::Migration
 def change
 add_reference :posts, :author, references: :users, index: true
 end
end

Section 5.3: Rollback migrations
To rollback the latest migration, either by reverting the change method or by running the down method. Run
command:

Version < 5.0

rake db:rollback
Version ≥ 5.0

rails db:rollback

Rollback the last 3 migrations
Version < 5.0

rake db:rollback STEP=3
Version ≥ 5.0

rails db:rollback STEP=3

STEP provide the number of migrations to revert.

Rollback all migrations
Version < 5.0

rake db:rollback VERSION=0
Version ≥ 5.0

rails db:rollback VERSION=0

Section 5.4: Add a new column with an index
To add a new indexed column email to the users table, run the command:

rails generate migration AddEmailToUsers email:string:index

This will generate the following migration:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 33

class AddEmailToUsers < ActiveRecord::Migration[5.0]
 def change
 add_column :users, :email, :string
 add_index :users, :email
 end
end

Section 5.5: Run specific migration
To run a specific migration up or down, use db:migrate:up or db:migrate:down.

Up a specific migration:

Version < 5.0

rake db:migrate:up VERSION=20090408054555
Version ≥ 5.0

rails db:migrate:up VERSION=20090408054555

Down a specific migration:

Version < 5.0

rake db:migrate:down VERSION=20090408054555
Version ≥ 5.0

rails db:migrate:down VERSION=20090408054555

The version number in the above commands is the numeric prefix in the migration’s filename. For example, to
migrate to the migration 20160515085959_add_name_to_users.rb, you would use 20160515085959 as the version
number.

Section 5.6: Redo migrations
You can rollback and then migrate again using the redo command. This is basically a shortcut that combines
rollback and migrate tasks.

Run command:

Version < 5.0

rake db:migrate:redo
Version ≥ 5.0

rails db:migrate:redo

You can use the STEP parameter to go back more than one version.

For example, to go back 3 migrations:

Version < 5.0

rake db:migrate:redo STEP=3
Version ≥ 5.0

rails db:migrate:redo STEP=3

Section 5.7: Add a new column to a table
To add a new column name to the users table, run the command:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 34

rails generate migration AddNameToUsers name

This generates the following migration:

class AddNameToUsers < ActiveRecord::Migration[5.0]
 def change
 add_column :users, :name, :string
 end
end

When the migration name is of the form AddXXXToTABLE_NAME followed by list of columns with data types, the
generated migration will contain the appropriate add_column statements.

Section 5.8: Remove an existing column from a table
To remove existing column name from users table, run the command:

rails generate migration RemoveNameFromUsers name:string

This will generate the following migration:

class RemoveNameFromUsers < ActiveRecord::Migration[5.0]
 def change
 remove_column :users, :name, :string
 end
end

When the migration name is of the form RemoveXXXFromYYY followed by list of columns with data types then the
generated migration will contain the appropriate remove_column statements.

While it’s not required to specify the data type (e.g. :string) as a parameter to remove_column, it is highly
recommended. If the data type is not specified, then the migration will not be reversible.

Section 5.9: Add column with default value
The following example adds a column admin to the users table, and gives that column the default value false.

class AddDetailsToUsers < ActiveRecord::Migration[5.0]
 def change
 add_column :users, :admin, :boolean, default: false
 end
end

Migrations with defaults might take a long time in large tables with for example PostgreSQL. This is because each
row will have to be updated with the default value for the newly added column. To circumvent this (and reduce
downtime during deployments), you can split your migration into three steps:

Add a add_column-migration similar to the one above, but set no default1.
Deploy and update the column in a rake task or on the console while your app is running. Make sure your2.
application already writes data to that colum for new/updated rows.
Add another change_column migration, which then changes the default of that column to the desired default3.
value

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 35

Section 5.10: Running migrations in dierent environments
To run migrations in the test environment, run this shell command:

rake db:migrate RAILS_ENV=test
Version ≥ 5.0

Starting in Rails 5.0, you can use rails instead of rake:

rails db:migrate RAILS_ENV=test

Section 5.11: Create a new table
To create a new users table with the columns name and salary, run the command:

rails generate migration CreateUsers name:string salary:decimal

This will generate the following migration:

class CreateUsers < ActiveRecord::Migration[5.0]
 def change
 create_table :users do |t|
 t.string :name
 t.decimal :salary
 end
 end
end

When the migration name is of the form CreateXXX followed by list of columns with data types, then a migration
will be generated that creates the table XXX with the listed columns.

Section 5.12: Running migrations
Run command:

Version < 5.0

rake db:migrate
Version ≥ 5.0

rails db:migrate

Specifying target version will run the required migrations (up, down, change) until it has reached the specified
version. Here, version number is the numerical prefix on the migration's filename.

Version < 5.0

rake db:migrate VERSION=20080906120000
Version ≥ 5.0

rails db:migrate VERSION=20080906120000

Section 5.13: Change an existing column’s type
To modify an existing column in Rails with a migration, run the following command:

rails g migration change_column_in_table

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 36

This will create a new migration file in db/migration directory (if it doesn’t exist already), which will contain the file
prefixed with timestamp and migration file name which contains the below content:

def change
 change_column(:table_name, :column_name, :new_type)
end

Rails Guide – Changing Columns

A longer but safer method

The above code prevents the user from ever rolling back the migration. You can avoid this problem by splitting the
change method into separate up and down methods:

def up
 change_column :my_table, :my_column, :new_type
end

def down
 change_column :my_table, :my_column, :old_type
end

Section 5.14: Create a hstore column
Hstore columns can be useful to store settings. They are available in PostgreSQL databases after you enabled the
extension.

class CreatePages < ActiveRecord::Migration[5.0]
 def change
 create_table :pages do |t|
 enable_extension 'hstore' unless extension_enabled?('hstore')
 t.hstore :settings
 t.timestamps
 end
 end
end

Section 5.15: Create a join table
To create a join table between students and courses, run the command:

$ rails g migration CreateJoinTableStudentCourse student course

This will generate the following migration:

class CreateJoinTableStudentCourse < ActiveRecord::Migration[5.0]
 def change
 create_join_table :students, :courses do |t|
 # t.index [:student_id, :course_id]
 # t.index [:course_id, :student_id]
 end
 end
end

http://guides.rubyonrails.org/active_record_migrations.html#changing-columns
http://guides.rubyonrails.org/active_record_migrations.html#changing-columns
http://guides.rubyonrails.org/active_record_migrations.html#changing-columns
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 37

Section 5.16: Add a self reference
A self reference can be useful to build a hierarchical tree. This can be achieved with add_reference in a migration.

class AddParentPages < ActiveRecord::Migration[5.0]
 def change
 add_reference :pages, :pages
 end
end

The foreign key column will be pages_id. If you want to decide about the foreign key column name, you have to
create the column first and add the reference after.

class AddParentPages < ActiveRecord::Migration[5.0]
 def change
 add_column :pages, :parent_id, :integer, null: true, index: true
 add_foreign_key :pages, :pages, column: :parent_id
 end
end

Section 5.17: Create an array column
An array column is supported by PostgreSQL. Rails will automatically convert a PostgreSQL array to a Ruby array,
and vice-versa.

Create a table with an array column:

create_table :products do |t|
 t.string :name
 t.text :colors, array: true, default: []
end

Add an array column to an existing table:

add_column :products, :colors, array: true, default: []

Add an index for an array column:

add_index :products, :colors, using: 'gin'

Section 5.18: Add an unique column to a table
To add a new unique column email to users, run the following command:

rails generate migration AddEmailToUsers email:string:uniq

This will create the following migration:

class AddEmailToUsers < ActiveRecord::Migration[5.0]
 def change
 add_column :users, :email, :string
 add_index :users, :email, unique: true
 end
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 38

Section 5.19: Checking migration status
We can check the status of migrations by running

Version ≥ 3.0 Version < 5.0

rake db:migrate:status
Version ≥ 5.0

rails db:migrate:status

The output will look like this:

Status Migration ID Migration Name
--
up 20140711185212 Create documentation pages
up 20140724111844 Create nifty attachments table
up 20140724114255 Create documentation screenshots
up 20160213170731 Create owners
up 20160218214551 Create users
up 20160221162159 ********** NO FILE **********
up 20160222231219 ********** NO FILE **********

Under the status field, up means the migration has been run and down means that we need to run the migration.

Section 5.20: Changing Tables
If you have created a table with some wrong schema, then the easiest way to change the columns and their
properties is change_table. Review the following example:

change_table :orders do |t|
 t.remove :ordered_at # removes column ordered_at
 t.string :skew_number # adds a new column
 t.index :skew_number #creates an index
 t.rename :location, :state #renames location column to state
end

The above migration changes a table orders. Here is a line-by-line description of the changes:

t.remove :ordered_at removes the column ordered_at from the table orders.1.
t.string :skew_number adds a new string-type column named skew_number in the orders table.2.
t.index :skew_number adds an index on the skew_number column in the orders table.3.
t.rename :location, :state renames the location column in the orders table to state.4.

Section 5.21: Adding a NOT NULL constraint to existing data
Say you want to add a foreign key company_id to the users table, and you want to have a NOT NULL constraint on it.
If you already have data in users, you will have to do this in multiple steps.

class AddCompanyIdToUsers < ActiveRecord::Migration
 def up
 # add the column with NULL allowed
 add_column :users, :company_id, :integer

 # make sure every row has a value
 User.find_each do |user|
 # find the appropriate company record for the user

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 39

 # according to your business logic
 company = Company.first
 user.update!(company_id: company.id)
 end

 # add NOT NULL constraint
 change_column_null :users, :company_id, false
 end

 # Migrations that manipulate data must use up/down instead of change
 def down
 remove_column :users, :company_id
 end
end

Section 5.22: Forbid null values
To forbid null values in your table columns, add the :null parameter to your migration, like this:

class AddPriceToProducts < ActiveRecord::Migration
 def change
 add_column :products, :float, null: false
 end
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 40

Chapter 6: Rails Best Practices
Section 6.1: Fat Model, Skinny Controller
“Fat Model, Skinny Controller” refers to how the M and C parts of MVC ideally work together. Namely, any non-
response-related logic should go in the model, ideally in a nice, testable method. Meanwhile, the “skinny” controller
is simply a nice interface between the view and model.

In practice, this can require a range of different types of refactoring, but it all comes down to one idea: by moving
any logic that isn’t about the response to the model (instead of the controller), not only have you promoted reuse
where possible but you’ve also made it possible to test your code outside of the context of a request.

Let’s look at a simple example. Say you have code like this:

def index
 @published_posts = Post.where('published_at <= ?', Time.now)
 @unpublished_posts = Post.where('published_at IS NULL OR published_at > ?', Time.now)
end

You can change it to this:

def index
 @published_posts = Post.published
 @unpublished_posts = Post.unpublished
end

Then, you can move the logic to your post model, where it might look like this:

scope :published, ->(timestamp = Time.now) { where('published_at <= ?', timestamp) }
scope :unpublished, ->(timestamp = Time.now) { where('published_at IS NULL OR published_at > ?',
timestamp) }

Section 6.2: Domain Objects (No More Fat Models)
"Fat Model, Skinny Controller" is a very good first step, but it doesn't scale well once your codebase starts to grow.

Let's think on the Single Responsibility of models. What is the single responsibility of models? Is it to hold business
logic? Is it to hold non-response-related logic?

No. Its responsibility is to handle the persistence layer and its abstraction.

Business logic, as well as any non-response-related logic and non-persistence-related logic, should go in domain
objects.

Domain objects are classes designed to have only one responsibility in the domain of the problem. Let your classes
"Scream Their Architecture" for the problems they solve.

In practice, you should strive towards skinny models, skinny views and skinny controllers. The architecture of your
solution shouldn't be influenced by the framework you're choosing.

For example

Let's say you're a marketplace which charges a fixed 15% commission to your customers via Stripe. If you charge a
fixed 15% commission, that means that your commission changes depending on the order's amount because Stripe

https://en.wikipedia.org/wiki/Single_responsibility_principle
https://8thlight.com/blog/uncle-bob/2011/09/30/Screaming-Architecture.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 41

charges 2.9% + 30¢.

The amount you charge as commission should be: amount*0.15 - (amount*0.029 + 0.30).

Don't write this logic in the model:

app/models/order.rb
class Order < ActiveRecord::Base
 SERVICE_COMMISSION = 0.15
 STRIPE_PERCENTAGE_COMMISSION = 0.029
 STRIPE_FIXED_COMMISSION = 0.30

 ...

 def commission
 amount*SERVICE_COMMISSION - stripe_commission
 end

 private

 def stripe_commission
 amount*STRIPE_PERCENTAGE_COMMISSION + STRIPE_FIXED_COMMISSION
 end
end

As soon as you integrate with a new payment method, you won't be able to scale this functionality inside this
model.

Also, as soon as you start to integrate more business logic, your Order object will start to lose cohesion.

Prefer domain objects, with the calculation of the commission completely abstracted from the responsibility of
persisting orders:

app/models/order.rb
class Order < ActiveRecord::Base
 ...
 # No reference to commission calculation
end

lib/commission.rb
class Commission
 SERVICE_COMMISSION = 0.15

 def self.calculate(payment_method, model)
 model.amount*SERVICE_COMMISSION - payment_commission(payment_method, model)
 end

 private

 def self.payment_commission(payment_method, model)
 # There are better ways to implement a static registry,
 # this is only for illustration purposes.
 Object.const_get("#{payment_method}Commission").calculate(model)
 end
end

lib/stripe_commission.rb
class StripeCommission
 STRIPE_PERCENTAGE_COMMISSION = 0.029
 STRIPE_FIXED_COMMISSION = 0.30

https://thebojan.ninja/2015/04/08/high-cohesion-loose-coupling/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 42

 def self.calculate(model)
 model.amount*STRIPE_PERCENTAGE_COMMISSION
 + STRIPE_PERCENTAGE_COMMISSION
 end
end

app/controllers/orders_controller.rb
class OrdersController < ApplicationController
 def create
 @order = Order.new(order_params)
 @order.commission = Commission.calculate("Stripe", @order)
 ...
 end
end

Using domain objects has the following architectural advantages:

it's extremely easy to unit test, as no fixtures or factories are required to instantiate the objects with the logic.
works with everything that accepts the message amount.
keeps each domain object small, with clearly defined responsibilities, and with higher cohesion.
easily scales with new payment methods by addition, not modification.
stops the tendency to have an ever-growing User object in each Ruby on Rails application.

I personally like to put domain objects in lib. If you do so, remember to add it to autoload_paths:

config/application.rb
config.autoload_paths << Rails.root.join('lib')

You may also prefer to create domain objects more action-oriented, following the Command/Query pattern. In such
case, putting these objects in app/commands might be a better place as all app subdirectories are automatically
added to the autoload path.

Section 6.3: Beware of default_scope
ActiveRecord includes default_scope, to automatically scope a model by default.

class Post
 default_scope ->{ where(published: true).order(created_at: :desc) }
end

The above code will serve posts which are already published when you perform any query on the model.

Post.all # will only list published posts

That scope, while innocuous-looking, has multiple hidden side-effect that you may not want.

default_scope and order

Since you declared an order in the default_scope, calling order on Post will be added as additional orders instead
of overriding the default.

Post.order(updated_at: :desc)

SELECT "posts".* FROM "posts" WHERE "posts"."published" = 't' ORDER BY "posts"."created_at" DESC,
"posts"."updated_at" DESC

This is probably not the behavior you wanted; you can override this by excluding the order from the scope first

https://en.wikipedia.org/wiki/Open/closed_principle
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 43

Post.except(:order).order(updated_at: :desc)

SELECT "posts".* FROM "posts" WHERE "posts"."published" = 't' ORDER BY "posts"."updated_at" DESC

default_scope and model initialization

As with any other ActiveRecord::Relation, default_scope will alter the default state of models initialized from it.

In the above example, Post has where(published: true) set by default, and so new models from Post will also
have it set.

Post.new # => <Post published: true>

unscoped

default_scope can nominally be cleared by calling unscoped first, but this also has side-effects. Take, for example,
an STI model:

class Post < Document
 default_scope ->{ where(published: true).order(created_at: :desc) }
end

By default, queries against Post will be scoped to type columns containing 'Post'. But unscoped will clear this
along with your own default_scope, so if you use unscoped you have to remember to account for this as well.

Post.unscoped.where(type: 'Post').order(updated_at: :desc)

unscoped and Model Associations

Consider a relationship between Post and User

class Post < ApplicationRecord
 belongs_to :user
 default_scope ->{ where(published: true).order(created_at: :desc) }
end

class User < ApplicationRecord
 has_many :posts
end

By getting an individual User, you can see the posts related to it:

user = User.find(1)
user.posts

SELECT "posts".* FROM "posts" WHERE "posts"."published" = 't' AND "posts"."user_id" = ? ORDER BY
"posts"."created_at" DESC [["user_id", 1]]

But you want to clear the default_scope from the posts relation, so you use unscoped

user.posts.unscoped

SELECT "posts".* FROM "posts"

This wipes out the user_id condition as well as the default_scope.

An example use-case for default_scope

Despite all of that, there are situations where using default_scope is justifiable.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 44

Consider a multi-tenant system where multiple subdomains are served from the same application but with isolated
data. One way to achieve this isolation is through default_scope. The downsides in other cases become upsides
here.

class ApplicationRecord < ActiveRecord::Base
 def self.inherited(subclass)
 super

 return unless subclass.superclass == self
 return unless subclass.column_names.include? 'tenant_id'

 subclass.class_eval do
 default_scope ->{ where(tenant_id: Tenant.current_id) }
 end
 end
end

All you need to do is set Tenant.current_id to something early in the request, and any table that contains
tenant_id will automatically become scoped without any additional code. Instantiating records will automatically
inherit the tenant id they were created under.

The important thing about this use-case is that the scope is set once per request, and it doesn't change. The only
cases you will need unscoped here are special cases like background workers that run outside of a request scope.

Section 6.4: Convention Over Configuration
In Rails, you find yourself looking at controllers, views, and models for your database.

To reduce the need for heavy configuration, Rails implements rules to ease up working with the application. You
may define your own rules but for the beginning (and for later on) it's a good idea to stick to conventions that Rails
offers.

These conventions will speed up development, keep your code concise and readable, and allow you an easy
navigation inside your application.

Conventions also lower the barriers to entry for beginners. There are so many conventions in Rails that a beginner
doesn’t even need to know about, but can just benefit from in ignorance. It’s possible to create great applications
without knowing why everything is the way it is.

For Example

If you have a database table called orders with the primary key id, the matching model is called order and the
controller that handles all the logic is named orders_controller. The view is split in different actions: if the
controller has a new and edit action, there is also a new and edit view.

For Example

To create an app you simply run rails new app_name. This will generate roughly 70 files and folders that comprise
the infrastructure and foundation for your Rails app.

It includes:

Folders to hold your models (database layer), controllers, and views
Folders to hold unit tests for your application
Folders to hold your web assets like Javascript and CSS files
Default files for HTTP 400 responses (i.e. file not found)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 45

Many others

Section 6.5: Don't Repeat Yourself (DRY)
To help to maintain clean code, Rails follows the principle of DRY.

It involves whenever possible, re-using as much code as possible rather than duplicating similar code in multiple
places (for example, using partials). This reduces errors, keeps your code clean and enforces the principle of writing
code once and then reusing it. It is also easier and more efficient to update code in one place than to update
multiple parts of the same code. Thus making your code more modular and robust.

Also Fat Model, Skinny Controller is DRY, because you write the code in your model and in the controller only do the
call, like:

Post model
scope :unpublished, ->(timestamp = Time.now) { where('published_at IS NULL OR published_at > ?',
timestamp) }

Any controller
def index

 @unpublished_posts = Post.unpublished

end

def others
 ...
 @unpublished_posts = Post.unpublished
 ...
end

This also helps lead to an API driven structure where internal methods are hidden and changes are achieved
through passing parameters in an API fashion.

Section 6.6: You Ain’t Gonna Need it (YAGNI)
If you can say “YAGNI” (You ain’t gonna need it) about a feature, you better not implement it. There can be a lot of
development time saved through focussing onto simplicity. Implementing such features anyway can lead to
problems:

Problems
Overengineering

If a product is more complicated than it has to be, it is over engineered. Usually these “not yet used” features will
never be used in the intended way they were written and have to be refactored if they ever get used. Premature
optimisations, especially performance optimisations, often lead to design decisions which will be proved wrong in
the future.

Code Bloat

Code Bloat means unnecessary complicated code. This can occur for example by abstraction, redundancy or
incorrect application of design patterns. The code base becomes difficult to understand, confusing and expensive
to maintain.

Feature Creep

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 46

Feature Creep refers to adding new features that go beyond the core functionality of the product and lead to an
unnecessarily high complexity of the product.

Long development time

The time which could be used to develop necessary features is spent to develop unnecessary features. The product
takes longer to deliver.

Solutions
KISS - Keep it simple, stupid

According to KISS, most systems work the best if they are designed simple. Simplicity should be a primary design
goal to reduce complexity. It can be achieved by following the “Single Responsibility Principle” for example.

YAGNI – You Ain’t Gonna Need it

Less is more. Think about every feature, is it really needed? If you can think of any way that it’s YAGNI, leave it away.
It’s better to develop it when it’s needed.

Continuous Refactoring

The product is being improved steadily. With refactoring, we can make sure that the product is being done
according to best practice and does not degenerate to a patch work.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 47

Chapter 7: Naming Conventions
Section 7.1: Controllers
Controller class names are pluralized. The reason is the controller controls multiple instances of object instance.

For Example: OrdersController would be the controller for an orders table. Rails will then look for the class
definition in a file called orders_controller.rb in the /app/controllers directory.

For Example: PostsController would be the controller for a posts table.

If the controller class name has multiple capitalized words, the table name is assumed to have underscores
between these words.

For Example: If a controller is named PendingOrdersController then assumed file name for this controller will be
pending_orders_controller.rb.

Section 7.2: Models
The model is named using the class naming convention of unbroken MixedCase and is always the singular of the
table name.

For Example: If a table was named orders, the associated model would be named Order

For Example: If a table was named posts, the associated model would be named Post

Rails will then look for the class definition in a file called order.rb in the /app/models directory.

If the model class name has multiple capitalized words, the table name is assumed to have underscores between
these words.

For Example: If a model is named BlogPost then assumed table name will be blog_posts.

Section 7.3: Filenames and autoloading
Rails files - and Ruby files in general - should be named with lower_snake_case filenames. E.g.

app/controllers/application_controller.rb

is the file that contains the ApplicationController class definition. Note that while PascalCase is used for class
and module names, the files in which they reside should still be lower_snake_case.

Consistent naming is important since Rails makes use of auto-loading files as needed, and uses "inflection" to
transform between different naming styles, such as transforming application_controller to
ApplicationController and back again.

E.g. if Rails sees that the BlogPost class doesn't exist (hasn't been loaded yet), it'll look for a file named
blog_post.rb and attempt to load that file.

It is therefore also important to name files for what they contain, since the autoloader expects file names to match
content. If, for instance, the blog_post.rb instead contains a class named just Post, you'll see a LoadError:
Expected [some path]/blog_post.rb to define BlogPost.

If you add a dir under app/something/ (e.g. /models/products/), and

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 48

want to namespace modules and classes inside new dir then you don't need to do anything and it'll be
loaded itself. For example, in app/models/products/ you would need to wrap your class inmodule
Products`.
don't want to namespace modules and classes inside my new dir then you have to add
config.autoload_paths += %W(#{config.root}/app/models/products) to your application.rb to
autoload.

One more thing to pay attention to (especially if English is not your first language) is the fact that Rails accounts for
irregular plural nouns in English. So if you have model named "Foot" the corresponding controller needs to be
called "FeetController" rather than "FootsController" if you want rails "magic" routing (and many more such
features) to work.

Section 7.4: Views and Layouts
When a controller action is rendered, Rails will attempt to find a matching layout and view based on the name of
the controller.

Views and layouts are placed in the app/views directory.

Given a request to the PeopleController#index action, Rails will search for:

the layout called people in app/views/layouts/ (or application if no match is found)
a view called index.html.erb in app/views/people/ by default
if you wish to render other file called index_new.html.erb you have to write code for that in
PeopleController#index action like render 'index_new'
we can set different layouts for every action by writing render 'index_new', layout:
'your_layout_name'

Section 7.5: Models class from Controller name
You can get a Model class from a Controller name this way (context is Controller class):

class MyModelController < ActionController::Base

 # Returns corresponding model class for this controller
 # @return [ActiveRecord::Base]
 def corresponding_model_class
 # ... add some validation
 controller_name.classify.constantize
 end
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 49

Chapter 8: ActionCable
Section 8.1: User Authentication
app/channels/application_cable/connection.rb
module ApplicationCable
 class Connection < ActionCable::Connection::Base
 identified_by :current_user

 def connect
 self.current_user = find_verified_user
 logger.add_tags 'ActionCable', current_user.id
 # Can replace current_user.id with usernames, ids, emails etc.
 end

 protected

 def find_verified_user
 if verified_user = env['warden'].user
 verified_user
 else
 reject_unauthorized_connection
 end
 end
 end
end

Section 8.2: [Basic] Server Side
app/channels/appearance_channel.rb
class NotificationsChannel < ApplicationCable::Channel
 def subscribed
 stream_from "notifications"
 end

 def unsubscribed
 end

 def notify(data)
 ActionCable.server.broadcast "notifications", { title: 'New things!', body: data }
 end
end

Section 8.3: [Basic] Client Side (Coeescript)
app/assets/javascripts/channels/notifications.coffee
App.notifications = App.cable.subscriptions.create "NotificationsChannel",
 connected: ->
 # Called when the subscription is ready for use on the server
 $(document).on "change", "input", (e)=>
 @notify(e.target.value)

 disconnected: ->
 # Called when the subscription has been terminated by the server
 $(document).off "change", "input"

 received: (data) ->
 # Called when there's incoming data on the websocket for this channel

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 50

 $('body').append(data)

 notify: (data)->
 @perform('notify', data: data)

app/assets/javascripts/application.js # usually generated like this
//= require jquery
//= require jquery_ujs
//= require turbolinks
//= require_tree .

app/assets/javascripts/cable.js # usually generated like this
//= require action_cable
//= require_self
//= require_tree ./channels

(function() {
 this.App || (this.App = {});

 App.cable = ActionCable.createConsumer();

}).call(this);

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 51

Chapter 9: ActiveModel
Section 9.1: Using ActiveModel::Validations
You can validate any object, even plain ruby.

class User
 include ActiveModel::Validations

 attr_reader :name, :age

 def initialize(name, age)
 @name = name
 @age = age
 end

 validates :name, presence: true
 validates :age, numericality: { only_integer: true, greater_than: 12 }
end

User.new('John Smith', 28).valid? #=> true
User.new('Jane Smith', 11).valid? #=> false
User.new(nil, 30).valid? #=> false

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 52

Chapter 10: User Authentication in Rails
Devise is a very powerful gem, it allows you to sign up, sign in and sign out options just after installing. Moreover
user can add authentications and restrictions to its applications. Devise also come with its own views, if user wants
to use. A user can also customize sign up and sign in forms according to its need and requirement. It should be
noted that Devise recommends that you implement your own login if you're new to rails.

Section 10.1: Authentication using Devise
Add gem to the Gemfile:

gem 'devise'

Then run the bundle install command.

Use command $ rails generate devise:install to generate required configuration file.

Set up the default URL options for the Devise mailer in each environment In development environment add this
line:

config.action_mailer.default_url_options = { host: 'localhost', port: 3000 }

to your config/environments/development.rb

similarly in production this edit config/environments/production.rb file and add

config.action_mailer.default_url_options = { host: 'your-site-url'}

Then create a model using:$ rails generate devise USER Where USER is the class name for which you want to
implement authentication.

Finally, run: rake db:migrate and you are all set.

Custom views

If you need to configure your views, you can use the rails generate devise:views generator that will copy all
views to your application. Then you can edit them as desired.

If you have more than one Devise model in your application (for example User and Admin), you will notice that
Devise uses the same views for all models. Devise offers an easy way to customize views. Set config.scoped_views
= true inside the config/initializers/devise.rb file.

You can also use the generator to create scoped views: rails generate devise:views users

If you would like to generate only a few sets of views, such as the ones for the registerable and confirmable module
use the -v flag: rails generate devise:views -v registrations confirmations

Section 10.2: Devise Controller Filters & Helpers
To set up a controller with user authentication using devise, add this before_action: (assuming your devise model is
'User'):

before_action :authenticate_user!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 53

To verify if a user is signed in, use the following helper:

user_signed_in?

For the current signed-in user, use this helper:

current_user

You can access the session for this scope:

user_session

Note that if your Devise model is called Member instead of User, replace user above with member

Section 10.3: Omniauth
First choose your auth strategy and add it to your Gemfile. You can find a list of strategies here:
https://github.com/intridea/omniauth/wiki/List-of-Strategies

gem 'omniauth-github', :github => 'intridea/omniauth-github'
gem 'omniauth-openid', :github => 'intridea/omniauth-openid'

You can add this to your rails middleware like so:

Rails.application.config.middleware.use OmniAuth::Builder do
 require 'openid/store/filesystem'
 provider :github, ENV['GITHUB_KEY'], ENV['GITHUB_SECRET']
 provider :openid, :store => OpenID::Store::Filesystem.new('/tmp')
end

By default, OmniAuth will add /auth/:provider to your routes and you can start by using these paths.

By default, if there is a failure, omniauth will redirect to /auth/failure

Section 10.4: has_secure_password
Create User Model

rails generate model User email:string password_digest:string

Add has_secure_password module to User model
class User < ActiveRecord::Base has_secure_password end

Now you can create a new user with password

user = User.new email: 'bob@bob.com', password: 'Password1', password_confirmation: 'Password1'

Verify password with authenticate method

user.authenticate('somepassword')

Section 10.5: has_secure_token
Create User Model

Schema: User(token:string, auth_token:string)

https://github.com/intridea/omniauth/wiki/List-of-Strategies
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 54

class User < ActiveRecord::Base
 has_secure_token
 has_secure_token :auth_token
end

Now when you create a new user a token and auth_token are automatically generated

user = User.new
user.save
user.token # => "pX27zsMN2ViQKta1bGfLmVJE"
user.auth_token # => "77TMHrHJFvFDwodq8w7Ev2m7"

You can update the tokens using regenerate_token and regenerate_auth_token

user.regenerate_token # => true
user.regenerate_auth_token # => true

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 55

Chapter 11: ActiveRecord Associations
Section 11.1: Polymorphic association
This type of association allows an ActiveRecord model to belong to more than one kind of model record. Common
example:

class Human < ActiveRecord::Base
 has_one :address, :as => :addressable
end

class Company < ActiveRecord::Base
 has_one :address, :as => :addressable
end

class Address < ActiveRecord::Base
 belongs_to :addressable, :polymorphic => true
end

Without this association, you’d have all these foreign keys in your Address table but you only would ever have a
value for one of them because an address, in this scenario, can only belong to one entity (Human or Company).
Here is what it would look like:

class Address < ActiveRecord::Base
 belongs_to :human
 belongs_to :company
end

Section 11.2: Self-Referential Association
Self-referential association is used to associate a model with itself. The most frequent example would be, to
manage association between a friend and his follower.

ex.

rails g model friendship user_id:references friend_id:integer

now you can associate models like;

class User < ActiveRecord::Base
 has_many :friendships
 has_many :friends, :through => :friendships
 has_many :inverse_friendships, :class_name => "Friendship", :foreign_key => "friend_id"
 has_many :inverse_friends, :through => :inverse_friendships, :source => :user
end

and the other model will look like;

class Friendship < ActiveRecord::Base
 belongs_to :user
 belongs_to :friend, :class_name => "User"
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 56

Section 11.3: belongs_to
A belongs_to association sets up a one-to-one connection with another model, so each instance of the declaring
model "belongs to" one instance of the other model.

For example, if your application includes users and posts, and each post can be assigned to exactly one user, you'd
declare the post model this way:

class Post < ApplicationRecord
 belongs_to :user
end

In your table structure you might then have

create_table "posts", force: :cascade do |t|
 t.integer "user_id", limit: 4
end

Section 11.4: has_one
A has_one association sets up a one-to-one connection with another model, but with different semantics. This
association indicates that each instance of a model contains or possesses one instance of another model.

For example, if each user in your application has only one account, you'd declare the user model like this:

class User < ApplicationRecord
 has_one :account
end

In Active Record, when you have a has_one relation, active record ensures that the only one record exists with the
foreign key.

Here in our example: In accounts table, there can only be one record with a particular user_id. If you try to associate
one more account for the same user, it makes the previous entry's foreign key as null(making it orphan) and
creates a new one automatically. It makes the previous entry null even if the save fails for the new entry to maintain
consistency.

user = User.first
user.build_account(name: "sample")
user.save [Saves it successfully, and creates an entry in accounts table with user_id 1]
user.build_account(name: "sample1") [automatically makes the previous entry's foreign key null]
user.save [creates the new account with name sample 1 and user_id 1]

Section 11.5: has_many
A has_many association indicates a one-to-many connection with another model. This association generally is
located on the other side of a belongs_to association.

This association indicates that each instance of the model has zero or more instances of another model.

For example, in an application containing users and posts, the user model could be declared like this:

class User < ApplicationRecord
 has_many :posts

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 57

end

The table structure of Post would remain the same as in the belongs_to example; in contrast, User would not
require any schema changes.

If you want to get the list of all the published posts for the User, then you can add the following (i.e. you can add
scopes to your association objects):

class User < ApplicationRecord
 has_many :published_posts, -> { where("posts.published IS TRUE") }, class_name: "Post"
end

Section 11.6: The has_many :through association
A has_many :through association is often used to set up a many-to-many connection with another model. This
association indicates that the declaring model can be matched with zero or more instances of another model by
proceeding through a third model.

For example, consider a medical practice where patients make appointments to see physicians. The relevant
association declarations could look like this:

class Physician < ApplicationRecord
 has_many :appointments
 has_many :patients, through: :appointments
end

class Appointment < ApplicationRecord
 belongs_to :physician
 belongs_to :patient
end

class Patient < ApplicationRecord
 has_many :appointments
 has_many :physicians, through: :appointments
end

Section 11.7: The has_one :through association
A has_one :through association sets up a one-to-one connection with another model. This association indicates
that the declaring model can be matched with one instance of another model by proceeding through a third model.

For example, if each supplier has one account, and each account is associated with one account history, then the
supplier model could look like this:

class Supplier < ApplicationRecord
 has_one :account
 has_one :account_history, through: :account
end

class Account < ApplicationRecord
 belongs_to :supplier
 has_one :account_history
end

class AccountHistory < ApplicationRecord
 belongs_to :account

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 58

end

Section 11.8: The has_and_belongs_to_many association
A has_and_belongs_to_many association creates a direct many-to-many connection with another model, with no
intervening model.

For example, if your application includes assemblies and parts, with each assembly having many parts and each
part appearing in many assemblies, you could declare the models this way:

class Assembly < ApplicationRecord
 has_and_belongs_to_many :parts
end

class Part < ApplicationRecord
 has_and_belongs_to_many :assemblies
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 59

Chapter 12: ActiveRecord Validations
Section 12.1: Validating length of an attribute
class Person < ApplicationRecord
 validates :name, length: { minimum: 2 }
 validates :bio, length: { maximum: 500 }
 validates :password, length: { in: 6..20 }
 validates :registration_number, length: { is: 6 }
end

The possible length constraint options are:

:minimum - The attribute cannot have less than the specified length.
:maximum - The attribute cannot have more than the specified length.
:in (or :within) - The attribute length must be included in a given interval. The value for this option must be
a range.
:is - The attribute length must be equal to the given value.

Section 12.2: Validates format of an attribute
Validate that an attribute's value matches a regular expression using format and the with option.

class User < ApplicationRecord
 validates :name, format: { with: /\A\w{6,10}\z/ }
end

You can also define a constant and set its value to a regular expression and pass it to the with: option. This might
be more convenient for really complex regular expressions

PHONE_REGEX = /\A\(\d{3}\)\d{3}-\d{4}\z/
validates :phone, format: { with: PHONE_REGEX }

The default error message is is invalid. This can be changed with the :message option.

validates :bio, format: { with: /\A\D+\z/, message: "Numbers are not allowed" }

The reverse also replies, and you can specify that a value should not match a regular expression with the without:
option

Section 12.3: Validating presence of an attribute
This helper validates that the specified attributes are not empty.

class Person < ApplicationRecord
 validates :name, presence: true
end

Person.create(name: "John").valid? # => true
Person.create(name: nil).valid? # => false

You can use the absence helper to validate that the specified attributes are absent. It uses the present? method to
check for nil or empty values.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 60

class Person < ApplicationRecord
 validates :name, :login, :email, absence: true
end

Note: In case the attribute is a boolean one, you cannot make use of the usual presence validation (the attribute
would not be valid for a false value). You can get this done by using an inclusion validation:

validates :attribute, inclusion: [true, false]

Section 12.4: Custom validations
You can add your own validations adding new classes inheriting from ActiveModel::Validator or from
ActiveModel::EachValidator. Both methods are similar but they work in a slightly different ways:

ActiveModel::Validator and validates_with

Implement the validate method which takes a record as an argument and performs the validation on it. Then use
validates_with with the class on the model.

app/validators/starts_with_a_validator.rb
class StartsWithAValidator < ActiveModel::Validator
 def validate(record)
 unless record.name.starts_with? 'A'
 record.errors[:name] << 'Need a name starting with A please!'
 end
 end
end

class Person < ApplicationRecord
 validates_with StartsWithAValidator
end

ActiveModel::EachValidator and validate

If you prefer to use your new validator using the common validate method on a single param, create a class
inheriting from ActiveModel::EachValidator and implement the validate_each method which takes three
arguments: record, attribute, and value:

class EmailValidator < ActiveModel::EachValidator
 def validate_each(record, attribute, value)
 unless value =~ /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\z/i
 record.errors[attribute] << (options[:message] || 'is not an email')
 end
 end
end

class Person < ApplicationRecord
 validates :email, presence: true, email: true
end

More information on the Rails guides.

Section 12.5: Validates inclusion of an attribute
You can check if a value is included in an array using the inclusion: helper. The :in option and its alias, :within
show the set of acceptable values.

http://guides.rubyonrails.org/active_record_validations.html#performing-custom-validations
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 61

class Country < ApplicationRecord
 validates :continent, inclusion: { in: %w(Africa Antartica Asia Australia
 Europe North America South America) }
end

To check if a value is not included in an array, use the exclusion: helper

class User < ApplicationRecord
 validates :name, exclusion: { in: %w(admin administrator owner) }
end

Section 12.6: Grouping validation
Sometimes it is useful to have multiple validations use one condition. It can be easily achieved using with_options.

class User < ApplicationRecord
 with_options if: :is_admin? do |admin|
 admin.validates :password, length: { minimum: 10 }
 admin.validates :email, presence: true
 end
end

All validations inside of the with_options block will have automatically passed the condition if: :is_admin?

Section 12.7: Validating numericality of an attribute
This validation restricts the insertion of only numeric values.

class Player < ApplicationRecord
 validates :points, numericality: true
 validates :games_played, numericality: { only_integer: true }
end

Besides :only_integer, this helper also accepts the following options to add constraints to acceptable values:

:greater_than - Specifies the value must be greater than the supplied value. The default error message for
this option is "must be greater than %{count}".
:greater_than_or_equal_to - Specifies the value must be greater than or equal to the supplied value. The
default error message for this option is "must be greater than or equal to %{count}".
:equal_to - Specifies the value must be equal to the supplied value. The default error message for this
option is "must be equal to %{count}".
:less_than - Specifies the value must be less than the supplied value. The default error message for this
option is "must be less than %{count}".
:less_than_or_equal_to - Specifies the value must be less than or equal to the supplied value. The default
error message for this option is "must be less than or equal to %{count}".
:other_than - Specifies the value must be other than the supplied value. The default error message for this
option is "must be other than %{count}".
:odd - Specifies the value must be an odd number if set to true. The default error message for this option is
"must be odd".
:even - Specifies the value must be an even number if set to true. The default error message for this option is
"must be even".

By default, numericality doesn't allow nil values. You can use allow_nil: true option to permit it.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 62

Section 12.8: Validate uniqueness of an attribute
This helper validates that the attribute's value is unique right before the object gets saved.

class Account < ApplicationRecord
 validates :email, uniqueness: true
end

There is a :scope option that you can use to specify one or more attributes that are used to limit the uniqueness
check:

class Holiday < ApplicationRecord
 validates :name, uniqueness: { scope: :year,
 message: "should happen once per year" }
end

There is also a :case_sensitive option that you can use to define whether the uniqueness constraint will be case
sensitive or not. This option defaults to true.

class Person < ApplicationRecord
 validates :name, uniqueness: { case_sensitive: false }
end

Section 12.9: Skipping Validations
Use following methods if you want to skip the validations. These methods will save the object to the database even
if it is invalid.

decrement!
decrement_counter
increment!
increment_counter
toggle!
touch
update_all
update_attribute
update_column
update_columns
update_counters

You can also skip validation while saving by passing validate as an argument to save

User.save(validate: false)

Section 12.10: Confirmation of attribute
You should use this when you have two text fields that should receive exactly the same content. For example, you
may want to confirm an email address or a password. This validation creates a virtual attribute whose name is the
name of the field that has to be confirmed with _confirmation appended.

class Person < ApplicationRecord
 validates :email, confirmation: true
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 63

Note This check is performed only if email_confirmation is not nil.

To require confirmation, make sure to add a presence check for the confirmation attribute.

class Person < ApplicationRecord
 validates :email, confirmation: true
 validates :email_confirmation, presence: true
end

Source

Section 12.11: Using :on option
The :on option lets you specify when the validation should happen. The default behavior for all the built-in
validation helpers is to be run on save (both when you're creating a new record and when you're updating it).

class Person < ApplicationRecord
 # it will be possible to update email with a duplicated value
 validates :email, uniqueness: true, on: :create

 # it will be possible to create the record with a non-numerical age
 validates :age, numericality: true, on: :update

 # the default (validates on both create and update)
 validates :name, presence: true
end

Section 12.12: Conditional validation
Sometimes you may need to validate record only under certain conditions.

class User < ApplicationRecord
 validates :name, presence: true, if: :admin?

 def admin?
 conditional here that returns boolean value
 end
end

If you conditional is really small, you can use a Proc:

class User < ApplicationRecord
 validates :first_name, presence: true, if: Proc.new { |user| user.last_name.blank? }
end

For negative conditional you can use unless:

class User < ApplicationRecord
 validates :first_name, presence: true, unless: Proc.new { |user| user.last_name.present? }
end

You can also pass a string, which will be executed via instance_eval:

class User < ApplicationRecord
 validates :first_name, presence: true, if: 'last_name.blank?'
end

http://guides.rubyonrails.org/active_record_validations.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 64

Chapter 13: ActiveRecord Query Interface
ActiveRecord is the M in MVC which is the layer of the system responsible for representing business data and logic.
The technique that connects the rich objects of an application to tables in a relational database management
system is Object Relational Mapper(ORM).

ActiveRecord will perform queries on the database for you and is compatible with most database systems.
Regardless of which database system you're using, the ActiveRecord method format will always be the same.

Section 13.1: .where
The where method is available on any ActiveRecord model and allows querying the database for a set of records
matching the given criteria.

The where method accepts a hash where the keys correspond to the column names on the table that the model
represents.

As a simple example, we will use the following model:

class Person < ActiveRecord::Base
 #attribute :first_name, :string
 #attribute :last_name, :string
end

To find all people with the first name of Sven:

people = Person.where(first_name: 'Sven')
people.to_sql # "SELECT * FROM people WHERE first_name='Sven'"

To find all people with the first name of Sven and last name of Schrodinger:

people = Person.where(first_name: 'Sven', last_name: 'Schrodinger')
people.to_sql # "SELECT * FROM people WHERE first_name='Sven' AND last_name='Schrodinger'"

In the above example, the sql output shows that records will only be returned if both the first_name and the
last_name match.

query with OR condition

To find records with first_name == 'Bruce' OR last_name == 'Wayne'

User.where('first_name = ? or last_name = ?', 'Bruce', 'Wayne')
SELECT "users".* FROM "users" WHERE (first_name = 'Bruce' or last_name = 'Wayne')

Section 13.2: .where with an array
The where method on any ActiveRecord model can be used to generate SQL of the form WHERE column_name IN
(a, b, c, ...). This is achieved by passing an array as argument.

As a simple example, we will use the following model:

class Person < ActiveRecord::Base
 #attribute :first_name, :string
 #attribute :last_name, :string

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 65

end

people = Person.where(first_name: ['Mark', 'Mary'])
people.to_sql # "SELECT * FROM people WHERE first_name IN ('Mark', 'Mary')"

If the array contains a nil, the SQL will be modified to check if the column is null:

people = Person.where(first_name: ['Mark', 'Mary', nil])
people.to_sql # "SELECT * FROM people WHERE first_name IN ('Mark', 'Mary') OR first_name IS NULL"

Section 13.3: Scopes
Scopes act as predefined filters on ActiveRecord models.

A scope is defined using the scope class method.

As a simple example, we will use the following model:

class Person < ActiveRecord::Base
 #attribute :first_name, :string
 #attribute :last_name, :string
 #attribute :age, :integer

 # define a scope to get all people under 17
 scope :minors, -> { where(age: 0..17) }

 # define a scope to search a person by last name
 scope :with_last_name, ->(name) { where(last_name: name) }

end

Scopes can be called directly off the model class:

minors = Person.minors

Scopes can be chained:

peters_children = Person.minors.with_last_name('Peters')

The where method and other query type methods can also be chained:

mary_smith = Person.with_last_name('Smith').where(first_name: 'Mary')

Behind the scenes, scopes are simply syntactic sugar for a standard class method. For example, these methods are
functionally identical:

scope :with_last_name, ->(name) { where(name: name) }

This ^ is the same as this:

def self.with_last_name(name)
 where(name: name)
end

Default Scope

in your model to set a default scope for all operations on the model.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 66

There is one notable difference between the scope method and a class method: scope-defined scopes will
always return an ActiveRecord::Relation, even if the logic within returns nil. Class methods, however,
have no such safety net and can break chainability if they return something else.

Section 13.4: Get first and last record
Rails have very easy way to get first and last record from database.

To get the first record from users table we need to type following command:

User.first

It will generate following sql query:

SELECT `users`.* FROM `users` ORDER BY `users`.`id` ASC LIMIT 1

And will return following record:

#<User:0x007f8a6db09920 id: 1, first_name: foo, created_at: Thu, 16 Jun 2016 21:43:03 UTC +00:00,
updated_at: Thu, 16 Jun 2016 21:43:03 UTC +00:00 >

To get the last record from users table we need to type following command:

User.last

It will generate following sql query:

SELECT `users`.* FROM `users` ORDER BY `users`.`id` DESC LIMIT 1

And will return following record:

#<User:0x007f8a6db09920 id: 10, first_name: bar, created_at: Thu, 16 Jun 2016 21:43:03 UTC +00:00,
updated_at: Thu, 16 Jun 2016 21:43:03 UTC +00:00 >

Passing an integer to first and last method creates a LIMIT query and returns array of objects.

User.first(5)

It will generate following sql query.

SELECT "users".* FROM "users" ORDER BY "users"."id" ASC LIMIT 5

And

User.last(5)

It will generate following sql query.

SELECT "users".* FROM "users" ORDER BY "users"."id" DESC LIMIT 5

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 67

Section 13.5: Ordering
You can order ActiveRecord query results by using .order:

User.order(:created_at)
#=> => [#<User id: 2, created_at: "2015-08-12 21:36:23">, #<User id: 11, created_at: "2015-08-15
10:21:48">]

If not specified, ordering will be performed in ascending order. You can specify it by doing:

User.order(created_at: :asc)
#=> => [#<User id: 2, created_at: "2015-08-12 21:36:23">, #<User id: 11, created_at: "2015-08-15
10:21:48">]

User.order(created_at: :desc)
#=> [#<User id: 7585, created_at: "2016-07-13 17:15:27">, #<User id: 7583, created_at: "2016-07-13
16:51:18">]

.order also accepts a string, so you could also do

User.order("created_at DESC")
#=> [#<User id: 7585, created_at: "2016-07-13 17:15:27">, #<User id: 7583, created_at: "2016-07-13
16:51:18">]

As the string is raw SQL, you can also specify a table and not only an attribute. Assuming you want to order users
according to their role name, you can do this:

Class User < ActiveRecord::Base
 belongs_to :role
end

Class Role < ActiveRecord::Base
 has_many :users
end

User.includes(:role).order("roles.name ASC")

The order scope can also accept an Arel node:

User.includes(:role).order(User.arel_table[:name].asc)

Section 13.6: where.not
where clauses can be negated using the where.not syntax:

class Person < ApplicationRecord
 #attribute :first_name, :string
end

people = Person.where.not(first_name: ['Mark', 'Mary'])
=> SELECT "people".* FROM "people" WHERE "people"."first_name" NOT IN ('Mark', 'Mary')

Supported by ActiveRecord 4.0 and later.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 68

Section 13.7: Includes
ActiveRecord with includes ensures that all of the specified associations are loaded using the minimum possible
number of queries. So when querying a table for data with an associated table, both tables are loaded into
memory.

@authors = Author.includes(:books).where(books: { bestseller: true })

this will print results without additional db hitting
@authors.each do |author|
 author.books.each do |book|
 puts book.title
 end
end

Author.joins(:books).where(books: { bestseller: true }) will load only authors with conditions into
memory without loading books. Use joins when additional information about nested associations isn't required.

@authors = Author.joins(:books).where(books: { bestseller: true })

this will print results without additional queries
@authors.each { |author| puts author.name }

this will print results with additional db queries
@authors.each do |author|
 author.books.each do |book|
 puts book.title
 end
end

Section 13.8: Joins
joins() allows you to join tables to your current model. For ex.

User.joins(:posts)

will produce the following SQL query:

"SELECT "users".* FROM "users" INNER JOIN "posts" ON "posts"."user_id" = "users"."id""

Having table joined, you will have access to it:

User.joins(:posts).where(posts: { title: "Hello world" })

Pay attention on plural form. If your relation is :has_many, then the joins() argument should be pluralized.
Otherwise, use singular.

Nested joins:

User.joins(posts: :images).where(images: { caption: 'First post' })

which will produce:

"SELECT "users".* FROM "users" INNER JOIN "posts" ON "posts"."user_id" = "users"."id" INNER JOIN
"images" ON "images"."post_id" = "images"."id""

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 69

Section 13.9: Limit and Oset
You can use limit to tell the number of records to be fetched, and use offset to tell the number of records to skip
before starting to return the records.

For Example

User.limit(3) #returns first three records

It will generate following sql query.

"SELECT `users`.* FROM `users` LIMIT 3"

As offset is not mentioned in above query so it will return first three records.

User.limit(5).offset(30) #returns 5 records starting from 31th i.e from 31 to 35

It will generate following sql query.

"SELECT `users`.* FROM `users` LIMIT 5 OFFSET 30"

Section 13.10: .find_by
You can find records by any field in your table using find_by.

So, if you have a User model with a first_name attribute you can do:

User.find_by(first_name: "John")
#=> #<User id: 2005, first_name: "John", last_name: "Smith">

Mind that find_by doesn't throw any exception by default. If the result is an empty set, it returns nil instead of
find.

If the exception is needed may use find_by! that raises an ActiveRecord::RecordNotFound error like find.

Section 13.11: .delete_all
If you need to delete a lot of records quickly, ActiveRecord gives .delete_all method. to be called directly on a
model, to delete all records in that table, or a collection. Beware though, as .delete_all does not instantiate any
object hence does not provide any callback (before_* and after_destroy don't get triggered).

User.delete_all
#=> 39 <-- .delete_all return the number of rows deleted

User.where(name: "John").delete_all

Section 13.12: ActiveRecord case insensitive search
If you need to search an ActiveRecord model for similar values, you might be tempted to use LIKE or ILIKE but this
isn't portable between database engines. Similarly, resorting to always downcasing or upcasing can create
performance issues.

You can use ActiveRecord's underlying Arel matches method to do this in a safe way:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 70

addresses = Address.arel_table
Address.where(addresses[:address].matches("%street%"))

Arel will apply the appropriate LIKE or ILIKE construct for the database engine configured.

Section 13.13: .group and .count
We have a Product model and we want to group them by their category.

Product.select(:category).group(:category)

This will query the database as follows:

SELECT "product"."category" FROM "product" GROUP BY "product"."category"

Make sure that the grouped field is also selected. Grouping is especially useful for counting the occurrence - in this
case - of categories.

Product.select(:category).group(:category).count

As the query shows, it will use the database for counting, which is much more efficient, than retrieving all record
first and do the counting in the code:

SELECT COUNT("products"."category") AS count_categories, "products"."category" AS products_category
FROM "products" GROUP BY "products"."category"

Section 13.14: .distinct (or .uniq)
If you want to remove duplicates from a result, you can use .distinct():

Customers.select(:country).distinct

This queries the database as follows:

SELECT DISTINCT "customers"."country" FROM "customers"

.uniq() has the same effect. With Rails 5.0 it got deprecated and it will be removed from Rails with version 5.1. The
reason is, that the word unique doesn't have the same meaning as distinct and it can be misleading. Furthermore
distinct is closer to the SQL syntax.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 71

Chapter 14: ActionMailer
Action Mailer allows you to send emails from your application using mailer classes and views. Mailers work very
similarly to controllers. They inherit from ActionMailer::Base and live in app/mailers, and they have associated views
that appear in app/views.

Section 14.1: Basic Mailer
This example uses four different files:

The User model
The User mailer
The html template for the email
The plain-text template for the email

In this case, the user model calls the approved method in the mailer and passes the post that has been approved
(the approved method in the model may be called by a callback, from a controller method, etc). Then, the mailer
generates the email from either the html or plain-text template using the information from the passed-in post (e.g.
the title). By default, the mailer uses the template with the same name as the method in the mailer (which is why
both the mailer method and the templates have the name 'approved').

user_mailer.rb
class UserMailer < ActionMailer::Base
 default from: "donotreply@example.com"

 def approved(post)
 @title = post.title
 @user = post.user
 mail(to: @user.email, subject: "Your Post was Approved!")
 end
end

user.rb
def approved(post)
 UserMailer.approved(post)
end

approved.html.erb
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Post Approved</title>
 </head>
 <body>
 <h2>Congrats <%= @user.name %>! Your post (#<%= @title %>) has been approved!</h2>
 <p>We look forward to your future posts!</p>
 </body>
</html>

approved.text.erb
Congrats <%= @user.name %>! Your post (#<%= @title %>) has been approved!
We look forward to your future posts!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 72

Section 14.2: Generating a new mailer
To generate a new mailer, enter the following command

rails generate mailer PostMailer

This will generate a blank template file in app/mailers/post_mailer.rb named PostMailer

class PostMailer < ApplicationMailer
end

Two layout files will also be generated for the email view, one for the html format and one for the text format.

If you prefer not to use the generator, you can create your own mailers. Make sure they inherit from
ActionMailer::Base

Section 14.3: ActionMailer Interceptor
Action Mailer provides hooks into the interceptor methods. These allow you to register classes that are called
during the mail delivery life cycle.

An interceptor class must implement the :delivering_email(message) method which will be called before the email is
sent, allowing you to make modifications to the email before it hits the delivery agents. Your class should make any
needed modifications directly to the passed in Mail::Message instance.

It can be useful for developers to send email to themselves not real users.

Example of registering an actionmailer interceptor:

config/initializers/override_mail_recipient.rb

if Rails.env.development? or Rails.env.test?
 class OverrideMailRecipient
 def self.delivering_email(mail)
 mail.subject = 'This is dummy subject'
 mail.bcc = 'test_bcc@noemail.com'
 mail.to = 'test@noemail.com'
 end
 end
 ActionMailer::Base.register_interceptor(OverrideMailRecipient)
end

Section 14.4: Adding Attachments
ActionMailer also allows attaching files.

attachments['filename.jpg'] = File.read('/path/to/filename.jpg')

By default, attachments will be encoded with Base64. To change this, you can add a hash to the attachments
method.

attachments['filename.jpg'] = {
 mime_type: 'application/gzip',
 encoding: 'SpecialEncoding',
 content: encoded_content

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 73

}

You can also add inline attachments

attachments.inline['image.jpg'] = File.read('/path/to/image.jpg')

Section 14.5: ActionMailer Callbacks
ActionMailer supports three callbacks

before_action
after_action
around_action

Provide these in your Mailer class

class UserMailer < ApplicationMailer
 after_action :set_delivery_options, :prevent_delivery_to_guests, :set_business_headers

Then create these methods under the private keyword

private
 def set_delivery_options
 end

 def prevent_delivery_to_guests
 end

 def set_business_headers
 end
end

Section 14.6: Generate a Scheduled Newsletter
Create the Newsletter model:

 rails g model Newsletter name:string email:string

 subl app/models/newsletter.rb

 validates :name, presence: true
 validates :email, presence: true

Create the Newsletter controller:

 rails g controller Newsletters create

 class NewslettersController < ApplicationController
 skip_before_action :authenticate_user!
 before_action :set_newsletter, only: [:destroy]

 def create
 @newsletter = Newsletter.create(newsletter_params)
 if @newsletter.save
 redirect_to blog_index_path
 else

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 74

 redirect_to root_path
 end
 end

 private

 def set_newsletter
 @newsletter = Newsletter.find(params[:id])
 end

 def newsletter_params
 params.require(:newsletter).permit(:name, :email)
 end

 end

After that, change the create.html.erb view to the nex name. We will convert this file to and partial view which will
be stored inside the Footer. The name will be _form.html.erb.

Change name file from: To:
app/views/newsletters/create.html.erb app/views/newsletters/_form.html.erb

After that set the routes:

 subl app/config/routes.rb

 resources :newsletters

Later on, we need to set the form we will use to save each mail:

 subl app/views/newsletters/_form.html.erb

 <%= form_for (Newsletter.new) do |f| %>
 <div class="col-md-12" style="margin: 0 auto; padding: 0;">
 <div class="col-md-6" style="padding: 0;">
 <%= f.text_field :name, class: 'form-control', placeholder:'Nombre' %>
 </div>
 <div class="col-md-6" style="padding: 0;">
 <%= f.text_field :email, class: 'form-control', placeholder:'Email' %>
 </div>
 </div>
 <div class="col-md-12" style="margin: 0 auto; padding:0;">
 <%= f.submit class:"col-md-12 tran3s s-color-bg hvr-shutter-out-horizontal", style:'border:
none; color: white; cursor: pointer; margin: 0.5em auto; padding: 0.75em; width: 100%;' %>
 </div>
 <% end %>

And after that, insert on the footer:

 subl app/views/layouts/_footer.html.erb

 <%= render 'newsletters/form' %>

Now, install the -letter_opener- to can preview email in the default browser instead of sending it. This means you
do not need to set up email delivery in your development environment, and you no longer need to worry about
accidentally sending a test email to someone else's address.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 75

First add the gem to your development environment and run the bundle command to install it.

 subl your_project/Gemfile

 gem "letter_opener", :group => :development

Then set the delivery method in the Development Environment:

 subl your_project/app/config/environments/development.rb

 config.action_mailer.delivery_method = :letter_opener

Now, create an Mailer Structure to manage the whole mailers which we will work. In terminal

 rails generate mailer UserMailer newsletter_mailer

And inside the UserMailer, we have to create a method called Newsletter Mailer which will be created to contain
inside on the lastest blog post and will be fired with a rake action. We will assume that you had a blog structure
created before.

subl your_project/app/mailers/user_mailer.rb

class UserMailer 'your_gmail_account@gmail.com'

 def newsletter_mailer
 @newsletter = Newsletter.all
 @post = Post.last(3)
 emails = @newsletter.collect(&:email).join(", ")
 mail(to: emails, subject: "Hi, this is a test mail.")
 end

end

After that, create the Mailer Template:

subl your_project/app/views/user_mailer/newsletter_mailer.html.erb

<p> Dear Followers: </p>
<p> Those are the lastest entries to our blog. We invite you to read and share everything we did on
this week. </p>

<table>
<% @post.each do |post| %>
 <%#= link_to blog_url(post) do %>
 <tr style="display:flex; float:left; clear:both;">
 <td style="display:flex; float:left; clear:both; height: 80px; width: 100px;">
 <% if post.cover_image.present? %>
 <%= image_tag post.cover_image.fullsize.url, class:"principal-home-image-slider" %>
 <%# else %>
 <%#= image_tag 'http://your_site_project.com' + post.cover_video, class:"principal-home-
image-slider" %>
 <%#= raw(video_embed(post.cover_video)) %>
 <% end %>

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 76

 </td>
 <td>
 <h3>
 <%= link_to post.title, :controller => "blog", :action => "show", :only_path => false,
:id => post.id %>
 </h3>
 <p><%= post.subtitle %></p>
 </td>
 <td style="display:flex; float:left; clear:both;">

 </td>
 </tr>
 <%# end %>
<% end %>
</table>

Since we want to send the email as a separate process, let’s create a Rake task to fire off the email. Add a new file
called email_tasks.rake to lib/tasks directory of your Rails application:

touch lib/taks/email_tasks.rake

desc 'weekly newsletter email'
task weekly_newsletter_email: :environment do
 UserMailer.newsletter_mailer.deliver!
end

The send_digest_email: :environment means to load the Rails environment before running the task, so you can
access the application classes (like UserMailer) within the task.

Now, running the command rake -T will list the newly created Rake task. Test everything works by running the task
and checking whether the email is sent or not.

To test if the mailer method works, run the rake command:

 rake weekly_newsletter_email

At this point, we have a working rake task which can be scheduled using crontab. So we will install the Whenever
Gem which is used to provide a clear syntax for writing and deploying cron jobs.

subl your_project/Gemfile

 gem 'whenever', require: false

After that, run the next command to create an initial config/schedule.rb file for you (as long as the config folder is
already present in your project).

 wheneverize .

 [add] writing `./config/schedule.rb'
 [done] wheneverized!

Now, inside the schedule file, we have to create our CRON JOB and call the mailer method inside determining the
CRON JOB to operate some tasks without assistance and in a selected range of time. You can use different types of
syntax as is explained on this link.

https://github.com/javan/whenever
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 77

subl your_project/config/schedule.rb

every 1.day, :at => '4:30 am' do
 rake 'weekly_newsletter_email'
end

Now to test the Cron Job was succesfully created we can use the next command to read since terminal, our
scheduled job in CRON SYNTAX:

your_project your_mac_user$ whenever

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 78

30 4 * * * /bin/bash -l -c 'cd /Users/your_mac_user/Desktop/your_project && RAILS_ENV=production
bundle exec rake weekly_newsletter_email --silent'

Now, to run the test in Development Environment, is wise to set the next line on the application.rb principal file to
let the application knows where are the models it will use.

 subl your_project/config/application.rb

 config.action_mailer.default_url_options = { :host => "http://localhost:3000/" }

Now to let Capistrano V3 save the new Cron Job inside the server and the trigger which will fired up the execution
of this task, we have to add the next requirement:

 subl your_project/Capfile

 require 'whenever/capistrano'

And insert into the deploy file the identifier which CRON JOB will use about the environment and the name of the
application.

subl your_project/config/deploy.rb

set :whenever_identifier, ->{ "#{fetch(:application)}_#{fetch(:rails_env)}" }

And ready, after save changes on each file, run the capistrano deploy command:

 cap production deploy

And now your JOB was created and calendarize to run the Mailer Method which is what i want and in the range of
time we set on this files.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 79

Chapter 15: Rails generate commands
Parameter Details

-h/--help Get help on any generator command

-p/--pretend Pretend Mode: Run generator but will not create or change any files

field:type 'field-name' is the name of the column to be created and 'type' is the data-type of column. The
possible values for 'type' in field:type are given in the Remarks section.

Usage: rails generate GENERATOR_NAME [args] [options].

Use rails generate to list available generators. Alias: rails g.

Section 15.1: Rails Generate Controller
we can create a new controller with rails g controller command.

$ bin/rails generate controller controller_name

The controller generator is expecting parameters in the form of generate controller ControllerName action1
action2.

The following creates a Greetings controller with an action of hello.

$ bin/rails generate controller Greetings hello

You will see the following output

 create app/controllers/greetings_controller.rb
 route get "greetings/hello"
 invoke erb
 create app/views/greetings
 create app/views/greetings/hello.html.erb
 invoke test_unit
 create test/controllers/greetings_controller_test.rb
 invoke helper
 create app/helpers/greetings_helper.rb
 invoke assets
 invoke coffee
 create app/assets/javascripts/greetings.coffee
 invoke scss
 create app/assets/stylesheets/greetings.scss

This generates the following

File Example
Controller File greetings_controller.rb

View File hello.html.erb

Functional Test File greetings_controller_test.rb

View Helper greetings_helper.rb

JavaScript File greetings.coffee

It will also add routes for each action in routes.rb

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 80

Section 15.2: Rails Generate Migration
You can generate a rails migration file from the terminal using the following command:

rails generate migration NAME [field[:type][:index] field[:type][:index]] [options]

For a list of all the options supported by the command, you could run the command without any arguments as in
rails generate migration.

For example, if you want to add first_name and last_name fields to users table, you can do:

rails generate migration AddNamesToUsers last_name:string first_name:string

Rails will create the following migration file:

class AddNamesToUsers < ActiveRecord::Migration[5.0]
 def change
 add_column :users, :last_name, :string
 add_column :users, :first_name, :string
 end
end

Now, apply the pending migrations to the database by running the following in the terminal:

Version < 5.0

rake db:migrate
Version ≥ 5.0

rails db:migrate

Note: For even less typing, you can replace generate with g.

Section 15.3: Rails Generate Scaold
DISCLAIMER: Scaffolding is not recommended unless it's for very conventional CRUD apps/testing. This may
generate a lot of files(views/models/controllers) that are not needed in your web application thus causing
headaches(bad :().

To generate a fully working scaffold for a new object, including model, controller, views, assets, and tests, use the
rails g scaffold command.

$ rails g scaffold Widget name:string price:decimal
 invoke active_record
 create db/migrate/20160722171221_create_widgets.rb
 create app/models/widget.rb
 invoke test_unit
 create test/models/widget_test.rb
 create test/fixtures/widgets.yml
 invoke resource_route
 route resources :widgets
 invoke scaffold_controller
 create app/controllers/widgets_controller.rb
 invoke erb
 create app/views/widgets
 create app/views/widgets/index.html.erb
 create app/views/widgets/edit.html.erb

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 81

 create app/views/widgets/show.html.erb
 create app/views/widgets/new.html.erb
 create app/views/widgets/_form.html.erb
 invoke test_unit
 create test/controllers/widgets_controller_test.rb
 invoke helper
 create app/helpers/widgets_helper.rb
 invoke jbuilder
 create app/views/widgets/index.json.jbuilder
 create app/views/widgets/show.json.jbuilder
 invoke assets
 invoke javascript
 create app/assets/javascripts/widgets.js
 invoke scss
 create app/assets/stylesheets/widgets.scss

Then you can run rake db:migrate to set up the database table.

Then you can visit http://localhost:3000/widgets and you'll see a fully functional CRUD scaffold.

Section 15.4: Rails Generate Model
To generate an ActiveRecord model that automagically creates the correct db migrations & boilerplate test files for
your model, enter this command

rails generate model NAME column_name:column_type

'NAME' is the name of the model. 'field' is the name of the column in the DB table and 'type' is the column type (e.g.
name:string or body:text). Check the Remarks section for a list of supported column types.

To setup foreign keys, add belongs_to:model_name.

So say you wanted to setup a User model that has a username, email and belongs to a School, you would type in
the following

rails generate model User username:string email:string school:belongs_to

rails g is shorthand for rails generate. This would produce the same result

rails g model User username:string email:string school:belongs_to

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 82

Chapter 16: Configuration
Section 16.1: Custom configuration
Create a YAML file in the config/ directory, for example: config/neo4j.yml

The content of neo4j.yml can be something like the below (for simplicity, default is used for all environments):

default: &default
 host: localhost
 port: 7474
 username: neo4j
 password: root

development:
 <<: *default

test:
 <<: *default

production:
 <<: *default

in config/application.rb:

module MyApp
 class Application < Rails::Application
 config.neo4j = config_for(:neo4j)
 end
end

Now, your custom config is accessible like below:

Rails.configuration.neo4j['host']
 #=> localhost
Rails.configuration.neo4j['port']
 #=> 7474

More info

Rails official API document describes the config_for method as:

Convenience for loading config/foo.yml for the current Rails env.

If you do not want to use a yaml file

You can configure your own code through the Rails configuration object with custom configuration under the
config.x property.

Example

config.x.payment_processing.schedule = :daily
config.x.payment_processing.retries = 3
config.x.super_debugger = true

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 83

These configuration points are then available through the configuration object:

Rails.configuration.x.payment_processing.schedule # => :daily
Rails.configuration.x.payment_processing.retries # => 3
Rails.configuration.x.super_debugger # => true
Rails.configuration.x.super_debugger.not_set # => nil

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 84

Chapter 17: I18n - Internationalization
Section 17.1: I18n with arguments
You can pass parameters to I18n t method:

Example config/locales/en.yml
en:
 page:
 users: "%{users_count} users currently online"

In models, controller, etc...
I18n.t('page.users', users_count: 12)

In views

ERB
<%= t('page.users', users_count: 12) %>

#SLIM
= t('page.users', users_count: 12)

Shortcut in views - DRY!
Use only the dot notation
Important: Consider you have the following controller and view page#users

ERB Example app/views/page/users.html.erb
<%= t('.users', users_count: 12) %>

And get the following output:

"12 users currently online"

Section 17.2: Translating ActiveRecord model attributes
globalize gem is a great solution to add translations to your ActiveRecord models. You can install it adding this to
your Gemfile:

gem 'globalize', '~> 5.0.0'

If you're using Rails 5 you will also need to add activemodel-serializers-xml

gem 'activemodel-serializers-xml'

Model translations allow you to translate your models' attribute values, for example:

class Post < ActiveRecord::Base
 translates :title, :text
end

I18n.locale = :en
post.title # => Globalize rocks!

I18n.locale = :he
post.title # => גלובאלייז2 שולט!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 85

After you defined your model attributes that need to be translated you have to create a translation table, through a
migration. globalize provides create_translation_table! and drop_translation_table!.

For this migration you need to use up and down, and not change. Also, in order to run this migration successfully,
you have to define the translated attributes in your model first, like shown above. A proper migration for the
previous Post model is this:

class CreatePostsTranslationTable < ActiveRecord::Migration
 def up
 Post.create_translation_table! title: :string, text: :text
 end

 def down
 Post.drop_translation_table!
 end
end

You may also pass options for specific options, like:

class CreatePostsTranslationTable < ActiveRecord::Migration
 def up
 Post.create_translation_table! title: :string,
 text: { type: :text, null: false, default: "Default text" }
 end

 def down
 Post.drop_translation_table!
 end
end

In case you already have any existing data in your needing translation columns, you can easily migrate it to the
translations table, by adjusting your migration:

class CreatePostsTranslationTable < ActiveRecord::Migration
 def up
 Post.create_translation_table!({
 title: :string,
 text: :text
 }, {
 migrate_data: true
 })

 end

 def down
 Post.drop_translation_table! migrate_data: true
 end
end

Make sure you drop the translated columns from the parent table after all your data is safely migrated. To
automatically remove the translated columns from the parent table after the data migration, add the option
remove_source_columns to the migration:

class CreatePostsTranslationTable < ActiveRecord::Migration
 def up
 Post.create_translation_table!({
 title: :string,
 text: :text

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 86

 }, {
 migrate_data: true,
 remove_source_columns: true
 })

 end

 def down
 Post.drop_translation_table! migrate_data: true
 end
end

You may also add new fields to a previously created translations table:

class Post < ActiveRecord::Base
 # Remember to add your attribute here too.
 translates :title, :text, :author
end

class AddAuthorToPost < ActiveRecord::Migration
 def up
 Post.add_translation_fields! author: :text
 end

 def down
 remove_column :post_translations, :author
 end
end

Section 17.3: Get locale from HTTP request
Sometimes it can be useful to set your application locale based upon the request IP. You can easily achieve this
using Geocoder. Among the many things Geocoder does, it can also tell the location of a request.

First, add Geocoder to your Gemfile

Gemfile
gem 'geocoder'

Geocoder adds location and safe_location methods to the standard Rack::Request object so you can easily look
up the location of any HTTP request by IP address. You can use this methods in a before_action in your
ApplicationController:

class ApplicationController < ActionController::Base
 before_action :set_locale_from_request

 def set_locale_from_request
 country_code = request.location.data["country_code"] #=> "US"
 country_sym = country_code.underscore.to_sym #=> :us

 # If request locale is available use it, otherwise use I18n default locale
 if I18n.available_locales.include? country_sym
 I18n.locale = country_sym
 end
end

Beware that this will not work in development and test environments, as things like 0.0.0.0 and localhost are
valid valid Internet IP addresses.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 87

Limitations and alternatives

Geocoder is very powerful and flexible, but needs to be configured to work with a geocoding service (see more
details); many of which place limits on usage. It's also worth bearing in mind that calling an external service on
every request could impact performance.

To address these, it can also be worth considering:

1. An offline solution

Using a gem like GeoIP (see here) allows lookups to happen against a local datafile. There may be a trade-off in
terms of accuracy, as these datafiles need to be kept up-to-date.

2. Use CloudFlare

Pages served through CloudFlare have the option of being geocoded transparently, with the country code being
added to the header (HTTP_CF_IPCOUNTRY). More detail can be found here.

Section 17.4: Pluralization
You can let I18n handle pluralization for you, just use count argument.

You need to set up your locale file like this:

config/locales/en.yml
en:
 online_users:
 one: "1 user is online"
 other: "%{count} users are online"

And then use the key you just created by passing the count argument to I18n.t helper:

I18n.t("online_users", count: 1)
#=> "1 user is online"

I18n.t("online_users", count: 4)
#=> "4 users are online"

Section 17.5: Set locale through requests
In most cases, you may want to set I18n locale. One might want to set the locale for the current session, the current
user, or based on a URL parameter This is easily achievable by implementing a before_action in one of your
controllers, or in ApplicationController to have it in all of your controllers.

class ApplicationController < ActionController::Base
 before_action :set_locale

 protected

 def set_locale
 # Remove inappropriate/unnecessary ones
 I18n.locale = params[:locale] || # Request parameter
 session[:locale] || # Current session
 (current_user.preferred_locale if user_signed_in?) || # Model saved configuration
 extract_locale_from_accept_language_header || # Language header - browser config
 I18n.default_locale # Set in your config files, english by super-default
 end

https://github.com/alexreisner/geocoder#geocoding-service-lookup-configuration
https://github.com/alexreisner/geocoder#geocoding-service-lookup-configuration
https://github.com/cjheath/geoip
https://support.cloudflare.com/hc/en-us/articles/200168236-What-does-Cloudflare-IP-Geolocation-do-
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 88

 # Extract language from request header
 def extract_locale_from_accept_language_header
 if request.env['HTTP_ACCEPT_LANGUAGE']
 lg = request.env['HTTP_ACCEPT_LANGUAGE'].scan(/^[a-z]{2}/).first.to_sym
 lg.in?([:en, YOUR_AVAILABLE_LANGUAGES]) ? lg : nil
 end
 end

URL-based

The locale param could come from an URL like this

http://yourapplication.com/products?locale=en

Or

http://yourapplication.com/en/products

To achieve the latter, you need to edit your routes, adding a scope:

config/routes.rb
scope "(:locale)", locale: /en|fr/ do
 resources :products
end

By doing this, visiting http://yourapplication.com/en/products will set your locale to :en. Instead, visiting
http://yourapplication.com/fr/products will set it to :fr. Furthermore, you won't get a routing error when
missing the :locale param, as visiting http://yourapplication.com/products will load the default I18n locale.

Session-based or persistence-based

This assumes the user can click on a button/language flag to change the language. The action can route to a
controller that sets the session to the current language (and eventually persist the changes to a database if the user
is connected)

class SetLanguageController < ApplicationController
 skip_before_filter :authenticate_user!
 after_action :set_preferred_locale

 # Generic version to handle a large list of languages
 def change_locale
 I18n.locale = sanitize_language_param
 set_session_and_redirect
 end

You have to define sanitize_language_param with your list of available languages, and eventually handle
errors in case the language doesn't exist.

If you have very few languages, it may be worth defining them like this instead:

def fr
 I18n.locale = :fr
 set_session_and_redirect
end

def en

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 89

 I18n.locale = :en
 set_session_and_redirect
end

private

 def set_session_and_redirect
 session[:locale] = I18n.locale
 redirect_to :back
 end

 def set_preferred_locale
 if user_signed_in?
 current_user.preferred_locale = I18n.locale.to_s
 current_user.save if current_user.changed?
 end
 end
end

Note: don't forget to add some routes to your change_language actions

Default Locale

Remember that you need to set your application default locale. You can do it by either setting it in
config/application.rb:

config.i18n.default_locale = :de

or by creating an initializer in the config/initializers folder:

config/initializers/locale.rb
I18n.default_locale = :it

Section 17.6: Use I18n with HTML Tags and Symbols
config/locales/en.yml
en:
 stackoverflow:
 header:
 title_html: "Use I18n with Tags & Symbols"

Note the addition of extra _html after the name title.

And in Views,

ERB
<h2><%= t(:title_html, scope: [:stackoverflow, :header]) %></h2>

Section 17.7: Use I18n in views
Assuming you have this YAML locale file:

config/locales/en.yml
en:
 header:
 title: "My header title"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 90

and you want to display your title string, you can do this

in ERB files
<%= t('header.title') %>

in SLIM files
= t('header.title')

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 91

Chapter 18: Using GoogleMaps with Rails
Section 18.1: Add the google maps javascript tag to the layout
header
In order to have google maps work properly with turbolinks, add the javascript tag directly to the layout header
rather than including it in a view.

app/views/layouts/my_layout.html.haml
!!!
%html{:lang => 'en'}
 %head
 - # ...
 = google_maps_api_script_tag

The google_maps_api_script_tag is best defined in a helper.

app/helpers/google_maps_helper.rb
module GoogleMapsHelper
 def google_maps_api_script_tag
 javascript_include_tag google_maps_api_source
 end

 def google_maps_api_source
 "https://maps.googleapis.com/maps/api/js?key=#{google_maps_api_key}"
 end

 def google_maps_api_key
 Rails.application.secrets.google_maps_api_key
 end
end

You can register your application with google and get your api key in the google api console. Google has a short
guide how to request an api key for the google maps javascript api.

The api key is stored in the secrets.ymlfile:

config/secrets.yml
development:
 google_maps_api_key: '...'
 # ...
production:
 google_maps_api_key: '...'
 # ...

Don't forget to add config/secrets.yml to your .gitignore file and makre sure you don't commit the api key to
the repository.

Section 18.2: Geocode the model
Suppose, your users and/or groups have profiles and you want to display address profile fields on a google map.

app/models/profile_fields/address.rb
class ProfileFields::Address < ProfileFields::Base
 # Attributes:
 # label, e.g. "Work address"

https://github.com/turbolinks/turbolinks
https://console.developers.google.com
https://developers.google.com/maps/documentation/javascript/get-api-key?hl=de
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 92

 # value, e.g. "Willy-Brandt-Straße 1\n10557 Berlin"
end

A great way to geocode the addresses, i.e. provide longitude and latitude is the geocoder gem.

Add geocoder to your Gemfile and run bundle to install it.

Gemfile
gem 'geocoder', '~> 1.3'

Add database columns for latitude and longitude in order to save the location in the database. This is more
efficient than querying the geocoding service every time you need the location. It's faster and you're not hitting the
query limit so quickly.

➜ bin/rails generate migration add_latitude_and_longitude_to_profile_fields \
 latitude:float longitude:float
➜ bin/rails db:migrate # Rails 5, or:
➜ rake db:migrate # Rails 3, 4

Add the geocoding mechanism to your model. In this example, the address string is stored in the value attribute.
Configure the geocoding to perform when the record has changed, and only whan a value is present:

app/models/profile_fields/address.rb
class ProfileFields::Address < ProfileFields::Base
 geocoded_by :value
 after_validation :geocode, if: ->(address_field){
 address_field.value.present? and address_field.value_changed?
 }

end

By default, geocoder uses google as lookup service. It has lots of interesting features like distance calculations or
proximity search. Fore more information, have a look at the geocoder README.

Section 18.3: Show addresses on a google map in the profile
view
On the profile view, show the profile fields of a user or group in a list as well as the address fields on a google map.

- # app/views/profiles/show.html.haml
%h1 Contact Information
.profile_fields
 = render @profile_fields
.google_map{data: address_fields: @address_fields.to_json }

The appropriate @profile_fields and @address_fields are set in the controller:

app/controllers/profiles_controller.rb
class ProfilesController < ApplicationController
 def show
 # ...
 @profile_fields = @user_or_group.profile_fields
 @address_fields = @profile_fields.where(type: 'ProfileFields::Address')
 end
end

https://github.com/alexreisner/geocoder
https://github.com/alexreisner/geocoder
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 93

Initialize the map, place the markers, set the zoom and other map settings with javascript.

Section 18.4: Set the markers on the map with javascript
Suppose, there is a .google_map div, which will become the map, and which has the address fields to show as
markers as data attribute.

For example:

<!-- http://localhost:3000/profiles/123 -->
<div class="google_map" data-address-fields="[
 {label: 'Work address', value: 'Willy-Brandt-Straße 1\n10557 Berlin',
 position: {lng: ..., lat: ...}},
 ...
]"></div>

To make use of the $(document).ready event with turbolinks without managing the turbolinks events by hand, use
the jquery.turbolinks gem.

If you want to perform some other operations with the map, later, for example filtering or info windows, it's
convenient to have the map managed by a coffee script class.

app/assets/javascripts/google_maps.js.coffee
window.App = {} unless App?
class App.GoogleMap
 constructor: (map_div)->
 # TODO: initialize the map
 # TODO: set the markers

When using several coffee script files, which are namespaced by default, it's convenient to define a global App
namespace, which is shared by all coffee script files.

http://i.stack.imgur.com/2n8le.png
https://github.com/turbolinks/turbolinks
https://github.com/kossnocorp/jquery.turbolinks
http://coffeescript.org/#classes
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 94

Then, loop through (possibly several) .google_map divs and create one instance of the App.GoogleMap class for each
of them.

app/assets/javascripts/google_maps.js.coffee
...
$(document).ready ->
 App.google_maps = []
 $('.google_map').each ->
 map_div = $(this)
 map = new App.GoogleMap map_div
 App.google_maps.push map

Section 18.5: Initialize the map using a coee script class
Provided an App.GoogleMap coffee script class, the google map can be initialized like this:

app/assets/javascripts/google_maps.js.coffee
...
class App.GoogleMap
 map_div: {}
 map: {}

 constructor: (map_div)->
 @map_div = map_div
 @init_map()
 @reference_the_map_as_data_attribute

 # To access the GoogleMap object or the map object itself
 # later via the DOM, for example
 #
 # $('.google_map').data('GoogleMap')
 #
 # store references as data attribute of the map_div.
 #
 reference_the_map_as_data_attribute: ->
 @map_div.data 'GoogleMap', this
 @map_div.data 'map', @map

 init_map: ->
 @map = new google.maps.Map(@dom_element, @map_configuration) if google?

 # `@map_div` is the jquery object. But google maps needs
 # the real DOM element.
 #
 dom_element: ->
 @map_div.get(0)

 map_configuration: -> {
 scrollWheel: true
 }

To learn more about the possible map_configuration options, have a look at google's MapOptions documentation
and their guide to adding control elements.

For reference, the class google.maps.Mapis extensively documented here.

Section 18.6: Initialize the map markers using a coee script

http://coffeescript.org/#classes
https://developers.google.com/maps/documentation/javascript/3.exp/reference#MapOptions
https://developers.google.com/maps/documentation/javascript/controls
https://developers.google.com/maps/documentation/javascript/3.exp/reference#Map
https://developers.google.com/maps/documentation/javascript/3.exp/reference#Map
https://developers.google.com/maps/documentation/javascript/3.exp/reference#Map
https://developers.google.com/maps/documentation/javascript/3.exp/reference#Map
https://developers.google.com/maps/documentation/javascript/3.exp/reference#Map
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 95

class
Provided an App.GoogleMap coffee script class and the marker information being stored in the data-address-
fields attribute of the .google_map div, the map markers can be initialized on the map like this:

app/assets/javascripts/google_maps.js.coffee
...
class App.GoogleMap
 # ...
 markers: []

 constructor: (map_div)->
 # ...
 @init_markers()

 address_fields: ->
 @map_div.data('address-fields')

 init_markers: ->
 self = this # to reference the instance as `self` when `this` is redefined.
 self.markers = []
 for address_field in self.address_fields()
 marker = new google.maps.Marker {
 map: self.map,
 position: {
 lng: address_field.longitude,
 lat: address_field.latitude
 },
 # # or, if `position` is defined in `ProfileFields::Address#as_json`:
 # position: address_field.position,
 title: address_field.value
 }
 self.markers.push marker

To learn more about marker options, have a look at google's MarkerOptions documentation and their guide to
markers.

Section 18.7: Auto-zoom a map using a coee script class
Provided an App.GoogleMap coffee script class with the google.maps.Map stored as @map and the
google.maps.Markers stored as @markers, the map can be auto-zoomed, i.e. adjusted that all markers are visible,
like this: on the map like this:

app/assets/javascripts/google_maps.js.coffee
...
class App.GoogleMap
 # ...
 bounds: {}

 constructor: (map_div)->
 # ...
 @auto_zoom()

 auto_zoom: ->
 @init_bounds()
 # TODO: Maybe, adjust the zoom to have a maximum or
 # minimum zoom level, here.

 init_bounds: ->

http://coffeescript.org/#classes
https://developers.google.com/maps/documentation/javascript/3.exp/reference#MarkerOptions
https://developers.google.com/maps/documentation/javascript/markers
https://developers.google.com/maps/documentation/javascript/markers
http://coffeescript.org/#classes
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 96

 @bounds = new google.maps.LatLngBounds()
 for marker in @markers
 @bounds.extend marker.position
 @map.fitBounds @bounds

To learn more about bounds, have a look at google's LatLngBounds documentation.

Section 18.8: Exposing the model properties as json
To display address profile fields as markers on a google map, the address field objects need to be passed as json
objects to javascript.

Regular database attributes

When calling to_json on an ApplicationRecord object, the database attributes are automatically exposed.

Given a ProfileFields::Address model with label, value, longitude and latitude attributes,
address_field.as_json results in a Hash, e.g. representation,

address_field.as_json # =>
 {label: "Work address", value: "Willy-Brandt-Straße 1\n10557 Berlin",
 longitude: ..., latitude: ...}

which is converted to a json string by to_json:

address_field.to_json # =>
 "{\"label\":\"Work address\",\"value\":\"Willy-Brandt-Straße 1\\n
 10557 Berlin\",\"longitude\":...,\"latitude\":...}"

This is useful because it allows to use label and value later in javascript, for example to show tool tips for the map
markers.

Other attributes

Other virtual attributes can be exposed by overriding the as_json method.

For example, to expose a title attribute, include it in the merged as_json hash:

app/models/profile_fields/address.rb
class ProfileFields::Address < ProfileFields::Base
 # ...

 # For example: "John Doe, Work address"
 def title
 "#{self.parent.name}, #{self.label}"
 end

 def as_json
 super.merge {
 title: self.title
 }
 end
end

The above example uses super to call the original as_json method, which returns the original attribute hash of the
object, and merges it with the required position hash.

https://developers.google.com/maps/documentation/javascript/3.exp/reference#LatLngBounds
http://guides.rubyonrails.org/active_record_basics.html#creating-active-record-models
http://rubylearning.com/satishtalim/ruby_overriding_methods.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 97

To understand the difference between as_json and to_json, have a look at this blog post by jjulian.

Position

To render markers, the google maps api, by default, requires a position hash which has longitude and latitude
stored as lng and lat respectively.

This position hash can be created in javascript, later, or here when defining the json representation of the address
field:

To provide this position as json attribute of the address field, just override the as_json method on the model.

app/models/profile_fields/address.rb
class ProfileFields::Address < ProfileFields::Base
 # ...

 def as_json
 super.merge {
 # ...
 position: {
 lng: self.longitude,
 lat: self.latitude
 }
 }
 end
end

http://jonathanjulian.com/2010/04/rails-to_json-or-as_json/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 98

Chapter 19: File Uploads
Section 19.1: Single file upload using Carrierwave
Start using File Uploads in Rails is quite simple, first thing you have to do is to choice plugin for managing uploads.
The most common onces are Carrierwave and Paperclip. Both are similar in functionality and rich in
documentation on

Let's have an look on example with simple avatar upload image with Carrierwave

After bundle install Carrierwave, type in console

$ rails generate uploader ProfileUploader

This will create an config file located at /app/uploaders/profile_uploader.rb

Here you can set up storage (i.e local or cloud), apply extensions for image manipulations (i.e. generting thumbs via
MiniMagick) and set server-side extension white list

Next, create new migration with string tipe for user_pic and mount uploader for it in user.rb model.

mount_uploader :user_pic, ProfileUploader

Next, display an form to upload avatar (may be an edit view for the user)

<% form_for @user, html: { multipart: true } do |f| %>
 <%= f.file_field :user_pic, accept: 'image/png, image/jpg' %>
 <%= f.submit "update profile pic", class: "btn" %>
<% end %>

Make sure to include { multipart: true } in order form can process uploads. Accept is an optional to set client-side
extension white-list.

To display an avatar, simply do

<%= image_tag @user.user_pic.url %>

Section 19.2: Nested model - multiple uploads
If you want to create multiple uploads, first thing you might want to do is create new model and set up relations

Let's say you want an multiple images for the Product model. Create an new model and make it belongs_to your
parent model

rails g model ProductPhoto

#product.rb
has_many :product_photos, dependent: :destroy
accepts_nested_attributes_for :product_photos

#product_photo.rb
belongs_to :product
mount_uploader :image_url, ProductPhotoUploader # make sure to include uploader (Carrierwave
example)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 99

accepts_nested_attributes_for is must, because it allow us to create nested form, so we can upload new file, change
product name and set price from an single form

Next, create form in a view (edit/create)

 <%= form_for @product, html: { multipart: true } do |product|%>

 <%= product.text_field :price # just normal type of field %>

 <%= product.fields_for :product_photos do |photo| # nested fields %>
 <%= photo.file_field :image, :multiple => true, name: "product_photos[image_url][]" %>
 <% end %>
 <%= p.submit "Update", class: "btn" %>
 <% end %>

Controller is nothing special, if you don't want to create an new one, just make an new one inside your product
controller

 # create an action
 def upload_file
 printer = Product.find_by_id(params[:id])
 @product_photo = printer.prodcut_photos.create(photo_params)
 end

 # strong params
 private
 def photo_params
 params.require(:product_photos).permit(:image)
 end

Display all images in a view

 <% @product.product_photos.each do |i| %>
 <%= image_tag i.image.url, class: 'img-rounded' %>
 <% end %>

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 100

Chapter 20: Caching
Section 20.1: Russian Doll Caching
You may want to nest cached fragments inside other cached fragments. This is called Russian doll caching.

The advantage of Russian doll caching is that if a single product is updated, all the other inner fragments can be
reused when regenerating the outer fragment.

As explained in the previous section, a cached file will expire if the value of updated_at changes for a record on
which the cached file directly depends. However, this will not expire any cache the fragment is nested within.

For example, take the following view:

<% cache product do %>
 <%= render product.games %>
<% end %>

Which in turn renders this view:

<% cache game do %>
 <%= render game %>
<% end %>

If any attribute of game is changed, the updated_at value will be set to the current time, thereby expiring the cache.

However, because updated_at will not be changed for the product object, that cache will not be expired and your
app will serve stale data. To fix this, we tie the models together with the touch method:

class Product < ApplicationRecord
 has_many :games
end

class Game < ApplicationRecord
 belongs_to :product, touch: true
end

Section 20.2: SQL Caching
Query caching is a Rails feature that caches the result set returned by each query. If Rails encounters the same
query again for that request, it will use the cached result set as opposed to running the query against the database
again.

For example:

class ProductsController < ApplicationController

 def index
 # Run a find query
 @products = Product.all

 ...

 # Run the same query again
 @products = Product.all
 end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 101

end

The second time the same query is run against the database, it's not actually going to hit the database. The first
time the result is returned from the query it is stored in the query cache (in memory) and the second time it's
pulled from memory.

However, it's important to note that query caches are created at the start of an action and destroyed at the end of
that action and thus persist only for the duration of the action. If you'd like to store query results in a more
persistent fashion, you can with low level caching.

Section 20.3: Action caching
Like page caching, action caching caches the whole page. The difference is that the request hits the Rails stack so
before filters are run before the cache is served. It's extracted from Rails to actionpack-action_caching gem.

A common example is caching of an action that requires authentication:

class SecretIngredientsController < ApplicationController
 before_action :authenticate_user!, only: :index, :show
 caches_action :index

 def index
 @secret_ingredients = Recipe.find(params[:recipe_id]).secret_ingredients
 end
end

Options include :expires_in, a custom :cache_path (for actions with multiple routes that should be cached
differently) and :if/:unless to control when the action should be cached.

class RecipesController < ApplicationController
 before_action :authenticate_user!, except: :show
 caches_page :show
 caches_action :archive, expires_in: 1.day
 caches_action :index, unless: { request.format.json? }
end

When the layout has dynamic content, cache only the action content by passing layout: false.

Section 20.4: Fragment caching
Rails.cache, provided by ActiveSupport, can be used to cache any serializable Ruby object across requests.

To fetch a value from the cache for a given key, use cache.read:

Rails.cache.read('city')
=> nil

Use cache.write to write a value to the cache:

Rails.cache.write('city', 'Duckburgh')
Rails.cache.read('city')
=> 'Duckburgh'

Alternatively, use cache.fetch to read a value from the cache and optionally write a default if there is no value:

Rails.cache.fetch('user') do

https://github.com/rails/actionpack-action_caching
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 102

 User.where(:is_awesome => true)
end

The return value of the passed block will be assigned to the cache under the given key, and then returned.

You can also specify a cache expiry:

Rails.cache.fetch('user', :expires_in => 30.minutes) do
 User.where(:is_awesome => true)
end

Section 20.5: Page caching
You can use the ActionPack page_caching gem to cache individual pages. This stores the result of one dynamic
request as a static HTML file, which is served in place of the dynamic request on subsequent requests. The README
contains full setup instructions. Once set up, use the caches_page class method in a controller to cache the result of
an action:

class UsersController < ActionController::Base
 caches_page :index
end

Use expire_page to force expiration of the cache by deleting the stored HTML file:

class UsersController < ActionController::Base
 caches_page :index

 def index
 @users = User.all
 end

 def create
 expire_page :action => :index
 end
end

The syntax of expire_page mimics that of url_for and friends.

Section 20.6: HTTP caching
Rails >= 3 comes with HTTP caching abilities out of the box. This uses the Cache-Control and ETag headers to
control how long a client or intermediary (such as a CDN) can cache a page.

In a controller action, use expires_in to set the length of caching for that action:

def show
 @user = User.find params[:id]
 expires_in 30.minutes, :public => true
end

Use expires_now to force immediate expiration of a cached resource on any visiting client or intermediary:

def show
 @users = User.find params[:id]
 expires_now if params[:id] == 1
end

https://github.com/rails/actionpack-page_caching
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 103

Chapter 21: ActionController
Action Controller is the C in MVC. After the router has determined which controller to use for a request, the
controller is responsible for making sense of the request and producing the output.

The controller will receive the request, fetch or save data from a model and use a view to create output. A controller
can be thought of as a middleman between models and views. It makes the model data available to the view so it
can display to the user, and it saves or updates user data to the model.

Section 21.1: Basic REST Controller
class PostsController < ApplicationController
 before_action :set_post, only: [:show, :edit, :update, :destroy]

 def index
 @posts = Post.all
 end

 def show

 end

 def new
 @post = Post.new
 end

 def edit

 end

 def create
 @post = Post.new(post_params)

 respond_to do |format|
 if @post.save
 format.html { redirect_to @post, notice: 'Post was successfully created.' }
 format.json { render :show, status: :created, location: @post }
 else
 format.html { render :new }
 format.json { render json: @post.errors, status: :unprocessable_entity }
 end
 end
 end

 def update
 respond_to do |format|
 if @post.update(post_params)
 format.html { redirect_to @post.company, notice: 'Post was successfully updated.' }
 format.json { render :show, status: :ok, location: @post }
 else
 format.html { render :edit }
 format.json { render json: @post.errors, status: :unprocessable_entity }
 end
 end
 end

 def destroy
 @post.destroy
 respond_to do |format|

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 104

 format.html { redirect_to posts_url, notice: 'Post was successfully destroyed.' }
 format.json { head :no_content }
 end
 end

 private
 def set_post
 @post = Post.find(params[:id])
 end

 def post_params
 params.require(:post).permit(:title, :body, :author)
 end
end

Section 21.2: Filters
Filters are methods that are run "before", "after" or "around" a controller action. They are inherited, so if you set
any in your ApplicationController they will be run for every request your application receives.

Before Filter

Before filters are executed before the controller action and can halt the request (and/or redirect). A common use is
to verify if a user is logged in:

class ApplicationController < ActionController::Base
 before_action :authenticate_user!

 def authenticate_user!
 redirect_to some_path unless user_signed_in?
 end
end

Before filters are run on requests before the request gets to the controller’s action. It can return a response itself
and completely bypass the action.

Other common uses of before filters is validating a user’s authentication before granting them access to the action
designated to handle their request. I’ve also seen them used to load a resource from the database, check
permissions on a resource, or manage redirects under other circumstances.

After Filter

After filters are similar to "before" ones, but as they get executed after the action run they have access the
response object that's about to be sent. So in short after filters are run after the action completes. It can modify the
response. Most of the time if something is done in an after filter, it can be done in the action itself, but if there is
some logic to be run after running any of a set of actions, then an after filter is a good place to do it.

Generally, I’ve seen after and around filters used for logging.

Around Filter

Around filters may have logic before and after the action being run. It simply yields to the action in whatever place
is necessary. Note that it doesn’t need to yield to the action and may run without doing so like a before filter.

Around filters are responsible for running their associated actions by yielding, similar to how Rack middlewares
work.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 105

Around callbacks wrap the execution of actions. You can write an around callback in two different styles. In the first,
the callback is a single chunk of code. That code is called before the action is executed. If the callback code invokes
yield, the action is executed. When the action completes, the callback code continues executing. Thus, the code
before the yield is like a before action callback and the code after the yield is the after action callback. If the callback
code never invokes yield. the action is not run-this is the same as having a before action callback return false.

Here's an example of the around filter:

around_filter :catch_exceptions

private
 def catch_exceptions
 begin
 yield
 rescue Exception => e
 logger.debug "Caught exception! #{e.message}"
 end
 end

This will catch exception of any action and put the message in your log. You can use around filters for exception
handling, setup and teardown, and a myriad of other cases.

Only and Except

All filters can be applied to specific actions, using :only and :except:

class ProductsController < ApplicationController
 before_action :set_product, only: [:show, :edit, :update]

 # ... controller actions

 # Define your filters as controller private methods
 private

 def set_product
 @product = Product.find(params[:id])
 end
end

Skipping Filter

All filters (inherited ones too) can also be skipped for some specific actions:

class ApplicationController < ActionController::Base
 before_action :authenticate_user!

 def authenticate_user!
 redirect_to some_path unless user_signed_in?
 end
end

class HomeController < ApplicationController
 skip_before_action :authenticate_user!, only: [:index]

 def index
 end
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 106

As they're inherited, filters can also be defined in a namespace "parent" controller. Say for example that you have an
admin namespace, and you of course want only admin users to be able to access it. You could do something like
this:

config/routes.rb
namespace :admin do
 resources :products
end

app/controllers/admin_controller.rb
class AdminController < ApplicationController
 before_action :authenticate_admin_user!

 private

 def authenticate_admin_user!
 redirect_to root_path unless current_user.admin?
 end
end

app/controllers/admin/products_controller.rb
class Admin::ProductsController < AdminController
 # This controller will inherit :authenticate_admin_user! filter
end

Beware that in Rails 4.x you could use before_filter along with before_action, but before_filter is currently
deprecated in Rails 5.0.0 and will be removed in 5.1.

Section 21.3: Generating a controller
Rails provides a lot of generators, for controllers too of course.

You can generate a new controller by running this command in your app folder

rails generate controller NAME [action action] [options]

Note: You can also use rails g alias to invoke rails generate

For example, to generate a controller for a Product model, with #index and #show actions you would run

rails generate controller products index show

This will create the controller in app/controllers/products_controller.rb, with both the actions you specified

class ProductsController < ApplicationController
 def index
 end

 def show
 end
end

It will also create a products folder inside app/views/, containing the two templates for your controller's actions
(i.e. index.html.erb and show.html.erb, note that the extension may vary according to your template engine, so if
you're using slim, for example, generator will create index.html.slim and show.html.slim)

Furthermore, if you specified any actions they will also be added to your routes file

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 107

config/routes.rb
get 'products/show'
get 'products/index'

Rails creates a helper file for you, in app/helpers/products_helper.rb, and also the assets files in
app/assets/javascripts/products.js and app/assets/stylesheets/products.css. As for views, the generator
changes this behaviour according to what's specified in your Gemfile: i.e., if you're using Coffeescript and Sass in
your application, the controller generator will instead generator products.coffee and products.sass.

At last, but not least, Rails also generates test files for your controller, your helper and your views.

If you don't want any of these to be created for you can tell Rails to skip them, just prepend any option with

--no-

or --skip, like this:

rails generate controller products index show --no-assets --no-helper

And the generator will skip both assets and helper

If you need to create a controller for a specific namespace add it in front of NAME:

rails generate controller admin/products

This will create your controller inside app/controllers/admin/products_controller.rb

Rails can also generate a complete RESTful controller for you:

rails generate scaffold_controller MODEL_NAME # available from Rails 4
rails generate scaffold_controller Product

Section 21.4: Rescuing ActiveRecord::RecordNotFound with
redirect_to
You can rescue a RecordNotFound exception with a redirect instead of showing an error page:

class ApplicationController < ActionController::Base

 # your other stuff

 rescue_from ActiveRecord::RecordNotFound do |exception|
 redirect_to root_path, 404, alert: I18n.t("errors.record_not_found")
 end
end

Section 21.5: Display error pages for exceptions
If you want to display to your users meaningful errors instead of simple "sorry, something went wrong", Rails has a
nice utility for the purpose.

Open the file app/controllers/application_controller.rb and you should find something like this:

class ApplicationController < ActionController::Base
 protect_from_forgery with: :exception

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 108

end

We can now add a rescue_from to recover from specific errors:

class ApplicationController < ActionController::Base
 protect_from_forgery with: :exception
 rescue_from ActiveRecord::RecordNotFound, with: :record_not_found

 private

 def record_not_found
 render html: "Record not found", status: 404
 end
end

It's recommended not to rescue from Exception or StandardError otherwise Rails won't be able to display helpful
pages in case of errors.

Section 21.6: Output JSON instead of HTML
class UsersController < ApplicationController
 def index
 hashmap_or_array = [{ name: "foo", email: "foo@example.org" }]

 respond_to do |format|
 format.html { render html: "Hello World" }
 format.json { render json: hashmap_or_array }
 end
 end
end

In addition you will need the route:

resources :users, only: [:index]

This will respond in two different ways to requests on /users:

If you visit /users or /users.html, it will show an html page with the content Hello World
If you visit /users.json, it will display a JSON object containing:

[
 {
 "name": "foo",
 "email": "foo@example.org"
 }
]

You can omit format.html { render inline: "Hello World" } if you want to make sure that your route will
answer only to JSON requests.

Section 21.7: Controllers (Basic)
class UsersController < ApplicationController
 def index
 respond_to do |format|
 format.html { render html: "Hello World" }
 end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 109

 end
end

This is a basic controller, with the addition of the following route (in routes.rb):

resources :users, only: [:index]

Will display the Hello World message in a webpage when you access the URL /users

Section 21.8: Parameters
Controllers have access to HTTP parameters (you might know them as ?name=foo in URLs, but Ruby on Rails handle
different formats too!) and output different responses based on them. There isn't a way to distinguish between GET
and POST parameters, but you shouldn't do that in any case.

class UsersController < ApplicationController
 def index
 respond_to do |format|
 format.html do
 if params[:name] == "john"
 render html: "Hello John"
 else
 render html: "Hello someone"
 end
 end
 end
 end
end

As usual our route:

resources :users, only: [:index]

Access the URL /users?name=john and the output will be Hello John, access /users?name=whatever and the
output will be Hello someone

Section 21.9: Filtering parameters (Basic)
class UsersController < ApplicationController
 def index
 respond_to do |format|
 format.html do
 render html: "Hello #{ user_params[:name] } user_params[:sentence]"
 end
 end
 end

 private

 def user_params
 if params[:name] == "john"
 params.permit(:name, :sentence)
 else
 params.permit(:name)
 end
 end
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 110

You can allow (or reject) some params so that only what you want will pass through and you won't have bad
surprises like user setting options not meant to be changed.

Visiting /users?name=john&sentence=developer will display Hello john developer, however visiting
/users?name=smith&sentence=spy will display Hello smith only, because :sentence is only allowed when you
access as john

Section 21.10: Redirecting
Assuming the route:

resources :users, only: [:index]

You can redirect to a different URL using:

class UsersController
 def index
 redirect_to "http://stackoverflow.com/"
 end
end

You can go back to the previous page the user visited using:

redirect_to :back

Note that in Rails 5 the syntax for redirecting back is different:

redirect_back fallback_location: "http://stackoverflow.com/"

Which will try to redirect to the previous page and in case not possible (the browser is blocking the HTTP_REFERRER
header), it will redirect to :fallback_location

Section 21.11: Using Views
Assuming the route:

resources :users, only: [:index]

And the controller:

class UsersController < ApplicationController
 def index
 respond_to do |format|
 format.html { render }
 end
 end
end

The view app/users/index.html.erb will be rendered. If the view is:

Hello World

The output will be a webpage with the text: "Hello World"

If you want to render a different view, you can use:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 111

render "pages/home"

And the file app/views/pages/home.html.erb will be used instead.

You can pass variables to views using controller instance variables:

class UsersController < ApplicationController
 def index
 @name = "john"

 respond_to do |format|
 format.html { render }
 end
 end
end

And in the file app/views/users/index.html.erb you can use @name:

Hello <%= @name %>

And the output will be: "Hello john"

An important note around the render syntax, you can omit the render syntax entirely, Rails assumes that if you
omit it. So:

class UsersController < ApplicationController
 def index
 respond_to do |format|
 format.html { render }
 end
 end
end

Can be written instead as:

class UsersController < ApplicationController
 def index
 respond_to do |format|
 format.html
 end
 end
end

Rails is smart enough to figure out that it must render the file app/views/users/index.html.erb.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 112

Chapter 22: Configuration
Section 22.1: Rails General Configuration
The following configuration options should be called on a Rails::Railtie object

config.after_initialize: Takes a block which will be run after rails has initialized the application.
config.asset_host: This sets the host for the assets. This is useful when using a Content Delivery Network. This
is shorthand for config.action_controller.asset_host
config.autoload_once_paths: This option accepts an array of paths where Rails autoloads constants. The
default value is an empty array
config.autoload_paths: This accepts an array of paths where Rails autoloads constants. It defaults to all
directories under app
config.cache_classes: Determines if classes and modules should be reloaded on each request. In
development mode, this defaults to false and in the production and test modes it defaults to true
config.action_view.cache_template_loading: This determines if templates should be reloaded on each
request. It defaults to the config.cache_classes setting
config.beginning_of_week: This sets the default beginning of week. It requires a valid week day symbol
(:monday)
config.cache_store: Choose which cache store to use. Options include :file_store, :memory_store,
mem_cache_store or null_store.
config.colorize_logging: This controls whether logging information is colorized
config.eager_load: Eager-loads all registered
config.encoding: Specifies the application encoding. The default value is UTF-8
config.log_level: Sets the verbosity of the Rails Logger. It defaults to :debug in all environments.
config.middleware: Use this to configure the application's middleware
config.time_zone: This sets the application's default time zone.

Section 22.2: Configuring assets
The following configuration options can be used for configuring assets

config.assets.enabled: Determines whether the asset pipeline is enabled. This defaults to true
config.assets.raise_runtime_errors: This enables runtime error checking. It's useful for development mode
config.assets.compress: Lets assets be compressed. In production mode, this defaults to true
config.assets.js_compressor: Specifies which JS compressor to use. Options include :closure, :uglifier
and :yui
config.assets.paths: Specifies which paths to search for assets.
config.assets.precompile: Lets you choose additional assets to be precompiled when rake
assets:precompile is run
config.assets.digest: This option allows the use of MD-5 fingerprints in the asset names. It defaults to true in
development mode
config.assets.compile: Toggles live Sprockets compilation in production mode

Section 22.3: Configuring generators
Rails allows you to configure what generators are used when running rails generate commands. This method,
config.generators takes a block

config.generators do |g|
 g.orm :active_record

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 113

 g.test_framework :test_unit
end

Here are some of the options

Option Description Default
assets Creates assets when generating scaffold true

force_plural Allows pluralized model names false

helper Determines whether to generate helpers true

integration_tool Specify integration tool test_unit

javascript_engine Configures JS engine :js

resource_route Generates resource route true

stylesheet_engine Configures stylesheet engine :cs

scaffold_stylesheet Creates CSS upon scaffolding true

test_framework Specify Test Framework Minitest

template_engine Configures template engine :erb

Section 22.4: Environments in Rails
Configuration files for rails can be found in config/environments/. By default rails has 3 environments,
development, production and test. By editing each file you are editing the configuration for that environment only.

Rails also has a configuration file in config/application.rb. This is a common configuration file as any settings
defined here are overwritten by the config specified in each environment.

You add or modify configuration options within the Rails.application.configure do block and configuration
options start with config.

Section 22.5: Database Configuration
Database configuration of a rails project lies in a file config/database.yml. If you create a project using rails new
command and don't specify a database engine to be used then rails uses sqlite as the default database. A typical
database.yml file with default configuration will look similar to following.

SQLite version 3.x
gem install sqlite3
#
Ensure the SQLite 3 gem is defined in your Gemfile
gem 'sqlite3'
#
default: &default
 adapter: sqlite3
 pool: 5
 timeout: 5000

development:
 <<: *default
 database: db/development.sqlite3

Warning: The database defined as "test" will be erased and
re-generated from your development database when you run "rake".
Do not set this db to the same as development or production.
test:
 <<: *default
 database: db/test.sqlite3

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 114

production:
 <<: *default
 database: db/production.sqlite3

If you want to change the default database while creating a new project you can specify database: rails new
hello_world --database=mysql

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 115

Chapter 23: Safe Constantize
Section 23.1: Successful safe_constantize
User is an ActiveRecord or Mongoid class. Replace User with any Rails class in your project (even something like
Integer or Array)

my_string = "User" # Capitalized string
 # => 'User'
my_constant = my_string.safe_constantize
 # => User
my_constant.all.count
 # => 18

my_string = "Array"
 # => 'Array'
my_constant = my_string.safe_constantize
 # => Array
my_constant.new(4)
 # => [nil, nil, nil, nil]

Section 23.2: Unsuccessful safe_constantize
This example will not work because the string passed in isn't recognized as a constant in the project. Even if you
pass in "array", it won't work as it isn't capitalized.

my_string = "not_a_constant"
 # => 'not_a_constant'
my_string.safe_constantize
 # => nil

my_string = "array" #Not capitalized!
 # => 'array'
my_string.safe_constantize
 # => nil

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 116

Chapter 24: Rails 5
Section 24.1: How to install Ruby on Rails 5 on RVM
RVM is a great tool to manage your ruby versions and set up your working environment.

Assuming you already have RVM installed, to get the latest version of ruby, which is needed for these examples,
open a terminal and run:

$ rvm get stable
$ rvm install ruby --latest

Check your ruby version by running:

$ ruby -v
> ruby 2.3.0p0

To install Rails 5, first create a new gemset using the latest ruby version and then install rails:

$ rvm use ruby-2.3.0@my_app --create
$ gem install rails

To check your rails version, run:

$ rails -v
> Rails 5.0.0

Section 24.2: Creating a Ruby on Rails 5 API
To create a new Rails 5 API, open a terminal and run the following command:

rails new app_name --api

The following file structure will be created:

 create
 create README.rdoc
 create Rakefile
 create config.ru
 create .gitignore
 create Gemfile
 create app
 create app/assets/javascripts/application.js
 create app/assets/stylesheets/application.css
 create app/controllers/application_controller.rb
 create app/helpers/application_helper.rb
 create app/views/layouts/application.html.erb
 create app/assets/images/.keep
 create app/mailers/.keep
 create app/models/.keep
 create app/controllers/concerns/.keep
 create app/models/concerns/.keep
 create bin
 create bin/bundle
 create bin/rails
 create bin/rake

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 117

 create bin/setup
 create config
 create config/routes.rb
 create config/application.rb
 create config/environment.rb
 create config/secrets.yml
 create config/environments
 create config/environments/development.rb
 create config/environments/production.rb
 create config/environments/test.rb
 create config/initializers
 create config/initializers/assets.rb
 create config/initializers/backtrace_silencers.rb
 create config/initializers/cookies_serializer.rb
 create config/initializers/filter_parameter_logging.rb
 create config/initializers/inflections.rb
 create config/initializers/mime_types.rb
 create config/initializers/session_store.rb
 create config/initializers/wrap_parameters.rb
 create config/locales
 create config/locales/en.yml
 create config/boot.rb
 create config/database.yml
 create db
 create db/seeds.rb
 create lib
 create lib/tasks
 create lib/tasks/.keep
 create lib/assets
 create lib/assets/.keep
 create log
 create log/.keep
 create public
 create public/404.html
 create public/422.html
 create public/500.html
 create public/favicon.ico
 create public/robots.txt
 create test/fixtures
 create test/fixtures/.keep
 create test/controllers
 create test/controllers/.keep
 create test/mailers
 create test/mailers/.keep
 create test/models
 create test/models/.keep
 create test/helpers
 create test/helpers/.keep
 create test/integration
 create test/integration/.keep
 create test/test_helper.rb
 create tmp/cache
 create tmp/cache/assets
 create vendor/assets/javascripts
 create vendor/assets/javascripts/.keep
 create vendor/assets/stylesheets
 create vendor/assets/stylesheets/.keep

This file structure will be created inside a new folder called app_name. It contains all the assets and code needed to
start your project.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 118

Enter the folder and install the dependencies:

cd app_name
bundle install

You should also start your database. Rails uses SQLite as a default database. To create it, run:

rake db:setup

Now run your appplication:

$ rails server

When you open your browser at http://localhost:3000, your shiny new (empty) API should be running!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 119

Chapter 25: Authorization with CanCan
CanCan is a simple authorization strategy for Rails which is decoupled from user roles. All permissions are stored in
a single location.

Section 25.1: Getting started with CanCan
CanCan is a a popular authorization library for Ruby on Rails which restricts user access to specific resources. The
latest gem (CanCanCan) is a continuation of the dead project CanCan.

Permissions are defined in the Ability class and can be used from controllers, views, helpers, or any other place in
the code.

To add authorization support to an app, add the CanCanCan gem to the Gemfile:

gem 'cancancan'

Then define the ability class:

app/models/ability.rb
class Ability
 include CanCan::Ability

 def initialize(user)
 end
end

Then check authorization using load_and_authorize_resource to load authorized models into the controller:

class ArticlesController < ApplicationController
 load_and_authorize_resource

 def show
 # @article is already loaded and authorized
 end
end

authorize! to check authorization or raise an exception

def show
 @article = Article.find(params[:id])
 authorize! :read, @article
end

can? to check if an object is authorized against a particular action anywhere in the controllers, views, or helpers

<% if can? :update, @article %>
 <%= link_to "Edit", edit_article_path(@article) %>
<% end %>

Note: This assumes the signed user is provided by the current_user method.

Section 25.2: Handling large number of abilities
Once the number of abilities definitions start to grow in number, it becomes more and more difficult to handle the

https://github.com/CanCanCommunity/cancancan
https://github.com/CanCanCommunity/cancancan
https://github.com/ryanb/cancan
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 120

Ability file.

The first strategy to handle these issue is to move abilities into meaningful methods, as per this example:

class Ability
 include CanCan::Ability

 def initialize(user)
 anyone_abilities

 if user
 if user.admin?
 admin_abilities
 else
 authenticated_abilities
 end
 else
 guest_abilities
 end
 end

 private

 def anyone_abilities
 # define abilities for everyone, both logged users and visitors
 end

 def guest_abilities
 # define abilities for visitors only
 end

 def authenticated_abilities
 # define abilities for logged users only
 end

 def admin_abilities
 # define abilities for admins only
 end
end

Once this class grow large enough, you can try breaking it into different classes to handle the different
responsibilities like this:

app/models/ability.rb
class Ability
 include CanCan::Ability

 def initialize(user)
 self.merge Abilities::Everyone.new(user)

 if user
 if user.admin?
 self.merge Abilities::Admin.new(user)
 else
 self.merge Abilities::Authenticated.new(user)
 end
 else
 self.merge Abilities::Guest.new(user)
 end
 end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 121

end

and then define those classes as:

app/models/abilities/guest.rb
module Abilities
 class Guest
 include CanCan::Ability

 def initialize(user)
 # Abilities for anonymous visitors only
 end
 end
end

and so on with Abilities::Authenticated, Abilities::Admin or any other else.

Section 25.3: Defining abilities
Abilities are defined in the Ability class using can and cannot methods. Consider the following commented
example for basic reference:

class Ability
 include CanCan::Ability

 def initialize(user)
 # for any visitor or user
 can :read, Article

 if user
 if user.admin?
 # admins can do any action on any model or action
 can :manage, :all
 else
 # regular users can read all content
 can :read, :all
 # and edit, update and destroy their own user only
 can [:edit, :destroy], User, id: user_id
 # but cannot read hidden articles
 cannot :read, Article, hidden: true
 end
 else
 # only unlogged visitors can visit a sign_up page:
 can :read, :sign_up
 end
 end
end

Section 25.4: Quickly test an ability
If you'd like to quickly test if an ability class is giving the correct permissions, you can initialize an ability in the
console or on another context with the rails environment loaded, just pass an user instance to test against:

test_ability = Ability.new(User.first)
test_ability.can?(:show, Post) #=> true
other_ability = Ability.new(RestrictedUser.first)
other_ability.cannot?(:show, Post) #=> true

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 122

More information: https://github.com/ryanb/cancan/wiki/Testing-Abilities

https://github.com/ryanb/cancan/wiki/Testing-Abilities
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 123

Chapter 26: Mongoid
Section 26.1: Fields
As per the Mongoid Documentation, there are 16 valid field types:

Array
BigDecimal
Boolean
Date
DateTime
Float
Hash
Integer
BSON::ObjectId
BSON::Binary
Range
Regexp
String
Symbol
Time
TimeWithZone

To add a field (let's call it name and have it be a String), add this to your model file:

field :name, type: String

To set a default value, just pass in the default option:

field :name, type: String, default: ""

Section 26.2: Installation
First, add Mongoid to your Gemfile:

gem "mongoid", "~> 4.0.0"

and then run bundle install. Or just run:

$ gem install mongoid

After installation, run the generator to create the config file:

$ rails g mongoid:config

which will create the file (myapp)/config/mongoid.yml.

Section 26.3: Creating a Model
Create a model (lets call it User) by running:

https://docs.mongodb.com/ecosystem/tutorial/mongoid-documents/#fields
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 124

$ rails g model User

which will generate the file app/models/user.rb:

class User
 include Mongoid::Document

end

This is all you need to have a model (albeit nothing but an id field). Unlike ActiveRecord, there is no migration files.
All the database information for the model is contained in the model file.

Timestamps are not automatically included in your model when you generate it. To add created_at and
updated_at to your model, add

include Mongoid::Timestamps

to your model underneath include Mongoid::Document like so:

class User
 include Mongoid::Document
 include Mongoid::Timestamps

end

Section 26.4: Classic Associations
Mongoid allows the classic ActiveRecord associations:

One-to-one: has_one / belongs_to
One-to-many: has_many / belongs_to
Many-to-many: has_and_belongs_to_many

To add an association (lets say the User has_many posts), you can add this to your User model file:

has_many :posts

and this to your Post model file:

belongs_to :user

This will add a user_id field in your Post model, add a user method to your Post class, and add a posts method to
your User class.

Section 26.5: Embedded Associations
Mongoid allows Embedded Associations:

One-to-one: embeds_one / embedded_in
One-to-many: embeds_many / embedded_in

To add an association (lets say the User embeds_many addresses), add this to your User file:

embeds_many :addresses

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 125

and this to your Address model file:

embedded_in :user

This will embed Address in your User model, adding a addresses method to your User class.

Section 26.6: Database Calls
Mongoid tries to have similar syntax to ActiveRecord when it can. It supports these calls (and many more)

User.first #Gets first user from the database

User.count #Gets the count of all users from the database

User.find(params[:id]) #Returns the user with the id found in params[:id]

User.where(name: "Bob") #Returns a Mongoid::Criteria object that can be chained
 #with other queries (like another 'where' or an 'any_in')
 #Does NOT return any objects from database

User.where(name: "Bob").entries #Returns all objects with name "Bob" from database

User.where(:name.in => ['Bob', 'Alice']).entries #Returns all objects with name "Bob" or "Alice"
from database

User.any_in(name: ["Bob", "Joe"]).first #Returns the first object with name "Bob" or "Joe"
User.where(:name => 'Bob').exists? # will return true if there is one or more users with name bob

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 126

Chapter 27: Gems
Section 27.1: Gemfiles
To start, gemfiles require at least one source, in the form of the URL for a RubyGems server.

Generate a Gemfile with the default rubygems.org source by running bundle init. Use https so your connection to
the server will be verified with SSL.

source 'https://rubygems.org'

Next, declare the gems that you need, including version numbers.

gem 'rails', '4.2.6'
gem 'rack', '>=1.1'
gem 'puma', '~>3.0'

Most of the version specifiers, like >= 1.0, are self-explanatory. The specifier ~> has a special meaning. ~> 2.0.3 is
identical to >= 2.0.3 and < 2.1. ~> 2.1 is identical to >= 2.1 and < 3.0. ~> 2.2.beta will match prerelease versions like
2.2.beta.12.

Git repositories are also valid gem sources, as long as the repo contains one or more valid gems. Specify what to
check out with :tag, :branch, or :ref. The default is the master branch.

gem 'nokogiri', :git => 'https://github.com/sparklemotion/nokogiri', :branch => 'master'

If you would like to use an unpacked gem directly from the filesystem, simply set the :path option to the path
containing the gem's files.

gem 'extracted_library', :path => './vendor/extracted_library'

Dependencies can be placed into groups. Groups can be ignored at install-time (using --without) or required all at
once (using Bundler.require).

gem 'rails_12factor', group: :production

group :development, :test do
 gem 'byebug'
 gem 'web-console', '~> 2.0'
 gem 'spring'
 gem 'dotenv-rails'
end

You can specify the required version of Ruby in the Gemfile with ruby. If the Gemfile is loaded on a different Ruby
version, Bundler will raise an exception with an explanation.

ruby '2.3.1'

Section 27.2: What is a gem?
A gem is the equivalent to a plugin or an extension for the programming language ruby.

To be exact even rails is nothing more than a gem. A lot of gems are built on rails or other gems (they are
dependent of said gem) or are standalone.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 127

In your Rails project
Gemfile

For your Rails project you have a file called Gemfile. In here you can add gems you want to include and use in your
project. Once added you need to install the gem by using bundler (See Bundler section).

Gemfile.lock

Once you have done this, your Gemfile.lock will be updated with your newly added gems and their dependencies.
This file locks your used gems so they use that specific version declared in that file.

GEM
remote: https://rubygems.org/
specs:
devise (4.0.3)
bcrypt (~> 3.0)
orm_adapter (~> 0.1)
railties (>= 4.1.0, < 5.1)
responders
warden (~> 1.2.3)

This example is for the gem devise. In the Gemfile.lock the version 4.0.3 is declared, to tell when installing your
project on an other machine or on your production server which specified version to use.

Development

Either a single person, a group or a whole community works on and maintains a gem. Work done is usually released
after certain issues have been fixed or features have been added.

Usually the releases follow the Semantic Versioning 2.0.0 principle.

Section 27.3: Bundler
The easiest way to handle and manage gems is by using bundler. Bundler is a package manager comparable to
bower.

To use bundler you first need to install it.

gem install bundler

After you have bundler up and running all you need to do is add gems to your Gemfile and run

bundle

in your terminal. This installs your newly added gems to your project. Should an issue arise, you would get a
prompt in your terminal.

If you are interested in more details, I suggest you have a look at the docs.

Section 27.4: Gemsets
If you are using RVM(Ruby Version Manager) then using a gemset for each project is a good idea. A gemset is just a
container you can use to keep gems separate from each other. Creating a gemset per project allows you to change
gems (and gem versions) for one project without breaking all your other projects. Each project need only worry
about its own gems.

http://semver.org/
http://bundler.io
http://bundler.io/docs.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 128

RVM provides (>= 0.1.8) a @global gemset per ruby interpreter. Gems you install to the @global gemset for a given
ruby are available to all other gemsets you create in association with that ruby. This is a good way to allow all of
your projects to share the same installed gem for a specific ruby interpreter installation.

Creating gemsets

Suppose you already have ruby-2.3.1 installed and you have selected it using this command:

rvm use ruby-2.3.1

Now to create gemset for this ruby version:

rvm gemset create new_gemset

where the new_gemset is the name of gemset. To see the list of available gemsets for a ruby version:

rvm gemset list

to list the gems of all ruby versions:

rvm gemset list_all

to use a gemset from the list (suppose new_gemset is the gemset I want to use):

rvm gemset use new_gemset

you can also specify the ruby version with the gemset if you want to shift to some other ruby version:

rvm use ruby-2.1.1@new_gemset

to specify a default gemset for a particular ruby version:

rvm use 2.1.1@new_gemset --default

to remove all the installed gems from a gemset you can empty it by:

rvm gemset empty new_gemset

to copy a gemset from one ruby to another you can do it by:

rvm gemset copy 2.1.1@rails4 2.1.2@rails4

to delete a gemset:

rvm gemset delete new_gemset

to see the current gemset name:

rvm gemset name

to install a gem in the global gemset:

rvm @global do gem install ...

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 129

Initializing Gemsets during Ruby Installs

When you install a new ruby, RVM not only creates two gemsets (the default, empty gemset and the global gemset),
it also uses a set of user-editable files to determine which gems to install.

Working in ~/.rvm/gemsets, rvm searchs for global.gems and default.gems using a tree-hierachy based on the
ruby string being installed. Using the example of ree-1.8.7-p2010.02, rvm will check (and import from) the
following files:

~/.rvm/gemsets/ree/1.8.7/p2010.02/global.gems
~/.rvm/gemsets/ree/1.8.7/p2010.02/default.gems
~/.rvm/gemsets/ree/1.8.7/global.gems
~/.rvm/gemsets/ree/1.8.7/default.gems
~/.rvm/gemsets/ree/global.gems
~/.rvm/gemsets/ree/default.gems
~/.rvm/gemsets/global.gems
~/.rvm/gemsets/default.gems

For example, if you edited ~/.rvm/gemsets/global.gems by adding these two lines:

bundler
awesome_print

every time you install a new ruby, these two gems are installed into your global gemset. default.gems and
global.gems files are usually overwritten during update of rvm.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 130

Chapter 28: Change default timezone
Section 28.1: Change Rails timezone AND have Active Record
store times in this timezone
application.rb
config.time_zone = 'Eastern Time (US & Canada)'
config.active_record.default_timezone = :local

Section 28.2: Change Rails timezone, but continue to have
Active Record save in the database in UTC
application.rb
config.time_zone = 'Eastern Time (US & Canada)'

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 131

Chapter 29: Asset Pipeline
The asset pipeline provides a framework to concatenate and minify or compress JavaScript and CSS assets. It also
adds the ability to write these assets in other languages and pre-processors such as CoffeeScript, Sass and ERB. It
allows assets in your application to be automatically combined with assets from other gems. For example, jquery-
rails includes a copy of jquery.js and enables AJAX features in Rails.

Section 29.1: Manifest Files and Directives
In the assets initalizer (config/initializers/assets.rb) are a few files explicitly defined to be precompiled.

Precompile additional assets.
application.coffee, application.scss, and all non-JS/CSS in app/assets folder are already added.
Rails.application.config.assets.precompile += %w(search.js)

In this example the application.coffee and application.scss are so called 'Manifest Files'. This files should be
used to include other JavaScript or CSS assets. The following command are available:

require <path>: The require directive functions similar to Ruby's own require. It provides a way to declare
a dependency on a file in your path and ensures it's only loaded once before the source file.
require_directory <path>: requires all the files inside a single directory. It's similar to path/* since it does
not follow nested directories.
require_tree <path>: requires all the nested files in a directory. Its glob equivalent is path/**/*.
require_self: causes the body of the current file to be inserted before any subsequent require directives.
Useful in CSS files, where it's common for the index file to contain global styles that need to be defined
before other dependencies are loaded.
stub <path>: remove a file from being included
depend_on <path>: Allows you to state a dependency on a file without including it. This is used for caching
purposes. Any changes made to the dependency file will invalidate the cache of the source file.

An application.scss file could look like:

/*
 *= require bootstrap
 *= require_directory .
 *= require_self
 */

Another example is the application.coffee file. Here with including jquery and Turbolinks:

#= require jquery2
#= require jquery_ujs
#= require turbolinks
#= require_tree .

If you don't use CoffeeScript, but plain JavaScript, the syntax would be:

//= require jquery2
//= require jquery_ujs
//= require turbolinks
//= require_tree .

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 132

Section 29.2: Rake tasks
By default sprockets-rails is shipped with the following rake tasks:

assets:clean[keep]: Remove old compiled assets
assets:clobber: Remove compiled assets
assets:environment: Load asset compile environment
assets:precompile: Compile all the assets named in config.assets.precompile

Section 29.3: Basic Usage
There are two basic ways that the asset pipeline is used:

When running a server in development mode, it automatically pre-processes and prepares your assets on-1.
the-fly.

In production mode, you’ll probably use it to pre-process, versionize, and compress and compile your assets.2.
You can do so by running the following command:

bundle exec rake assets:precompile

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 133

Chapter 30: Upgrading Rails
Section 30.1: Upgrading from Rails 4.2 to Rails 5.0
Note: Before upgrading your Rails app, always make sure to save your code on a version control system, such as Git.

To upgrade from Rails 4.2 to Rails 5.0, you must be using Ruby 2.2.2 or newer. After upgrading your Ruby version if
required, go to your Gemfile and change the line:

gem 'rails', '4.2.X'

to:

gem 'rails', '~> 5.0.0'

and on the command line run:

$ bundle update

Now run the update task using the command:

$ rake rails:update

This will help you to update configuration files. You will be prompted to overwrite files and you have several options
to input:

Y – yes, overwrite
n – no, do not overwrite
a – all, overwrite this and all others
q – quit, abort
d – diff, show the differences between the old and the new
h – help

Typically, you should check the differences between the old and new files to make sure you aren't getting any
unwanted changes.

Rails 5.0 ActiveRecord models inherit from ApplicationRecord, rather than ActiveRecord::Base.
ApplicationRecord is the superclass for all models, similar to how ApplicationController is the superclass for
controllers. To account for this new way in which models are handled, you must create a file in your app/models/
folder called application_record.rb and then edit that file's contents to be:

class ApplicationRecord < ActiveRecord::Base
 self.abstract_class = true
end

Rails 5.0 also handles callbacks slightly different. Callbacks that return false won't halt the callback chain, which
means subsequent callbacks will still run, unlike Rails 4.2. When you upgrade, the Rails 4.2 behavior will remain,
though you can switch to the Rails 5.0 behavior by adding:

ActiveSupport.halt_callback_chains_on_return_false = false

to the config/application.rb file. You can explicitly halt the callback chain by calling throw(:abort).

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 134

In Rails 5.0, ActiveJob will inherit from ApplicationJob, rather than ActiveJob::Base like in Rails 4.2. To upgrade
to Rails 5.0, create a file called application_job.rb in the app/jobs/ folder. Edit that file's contents to be:

class ApplicationJob < ActiveJob::Base
end

Then, you must change all of your jobs to inherit from ApplicationJob rather than ActiveJob::Base.

One of the other biggest changes of Rails 5.0 doesn't require any code changes, but will change the way you use the
command line with your Rails apps. You will be able to use bin/rails, or just rails, to run tasks and tests. For
example, instead of using $ rake db:migrate, you can now do $ rails db:migrate. If you run $ bin/rails, you
can view all the available commands. Note that many of the tasks that can now be run with bin/rails still work
using rake.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 135

Chapter 31: ActiveRecord Locking
Section 31.1: Optimistic Locking
user_one = User.find(1)
user_two = User.find(1)

user_one.name = "John"
user_one.save
Run at the same instance
user_two.name = "Doe"
user_two.save # Raises a ActiveRecord::StaleObjectError

Section 31.2: Pessimistic Locking
appointment = Appointment.find(5)
appointment.lock!
#no other users can read this appointment,
#they have to wait until the lock is released
appointment.save!
#lock is released, other users can read this account

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 136

Chapter 32: Debugging
Section 32.1: Debugging Rails Application
To be able to debug an application is very important to understand the flow of an application's logic and data. It
helps solving logical bugs and adds value to the programming experience and code quality. Two popular gems for
debugging are debugger (for ruby 1.9.2 and 1.9.3) and byebug (for ruby >= 2.x).

For debugging .rb files, follow these steps:

Add debugger or byebug to the development group of Gemfile1.
Run bundle install2.
Add debugger or byebug as the breakpoint3.
Run the code or make request4.
See the rails server log stopped at the specified breakpoint5.
At this point you can use your server terminal just like rails console and check the values of variable and6.
params
For moving to next instruction, type next and press enter7.
For stepping out type c and press enter8.

If you want to debug .html.erb files, break point will be added as <% debugger %>

Section 32.2: Debugging Ruby on Rails Quickly + Beginner
advice
Debugging by raising exceptions is far easier than squinting through print log statements, and for most bugs, its
generally much faster than opening up an irb debugger like pry or byebug. Those tools should not be your first step.

Debugging Ruby/Rails Quickly:

1. Fast Method: Raise an Exception then and .inspect its result

The fastest way to debug Ruby (especially Rails) code is to raise an exception along the execution path of your code
while calling .inspect on the method or object (e.g. foo):

raise foo.inspect

In the above code, raise triggers an Exception that halts execution of your code, and returns an error message that
conveniently contains .inspect information about the object/method (i.e. foo) on the line that you're trying to
debug.

This technique is useful for quickly examining an object or method (e.g. is it nil?) and for immediately confirming
whether a line of code is even getting executed at all within a given context.

2. Fallback: Use a ruby IRB debugger like byebug or pry

Only after you have information about the state of your codes execution flow should you consider moving to a ruby
gem irb debugger like pry or byebug where you can delve more deeply into the state of objects within your
execution path.

To use the byebug gem for debugging in Rails:

https://github.com/cldwalker/debugger
https://github.com/deivid-rodriguez/byebug
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 137

Add gem 'byebug' inside the development group in your Gemfile1.
Run bundle install2.
Then to use, insert the phrase byebug inside the execution path of the code you want examined.3.

This byebug variable when executed will open up an ruby IRB session of your code, giving you direct access to the
state of objects as they are at that point in the code's execution.

IRB debuggers like Byebug are useful for deeply analyzing the state of your code as it executes. However, they are
more time consuming procedure compared to raising errors, so in most situations they should not be your first
step.

General Beginner Advice

When you are trying to debug a problem, good advice is to always: Read The !@#$ing Error Message (RTFM)

That means reading error messages carefully and completely before acting so that you understand what it's trying to
tell you. When you debug, ask the following mental questions, in this order, when reading an error message:

What class does the error reference? (i.e. do I have the correct object class or is my object nil?)1.
What method does the error reference? (i.e. is their a type in the method; can I call this method on this type/class2.
of object?)
Finally, using what I can infer from my last two questions, what lines of code should I investigate? (remember:3.
the last line of code in the stack trace is not necessarily where the problem lies.)

In the stack trace pay particular attention to lines of code that come from your project (e.g. lines starting with
app/... if you are using Rails). 99% of the time the problem is with your own code.

To illustrate why interpreting in this order is important...

E.g. a Ruby error message that confuses many beginners:

You execute code that at some point executes as such:

@foo = Foo.new

...

@foo.bar

and you get an error that states:

undefined method "bar" for Nil:nilClass

Beginners see this error and think the problem is that the method bar is undefined. It's not. In this error the real
part that matters is:

for Nil:nilClass

for Nil:nilClass means that @foo is Nil! @foo is not a Foo instance variable! You have an object that is Nil. When
you see this error, it's simply ruby trying to tell you that the method bar doesn't exist for objects of the class Nil.
(well duh! since we are trying to use a method for an object of the class Foo not Nil).

Unfortunately, due to how this error is written (undefined method "bar" for Nil:nilClass) its easy to get tricked
into thinking this error has to do with bar being undefined. When not read carefully this error causes beginners to
mistakenly go digging into the details of the bar method on Foo, entirely missing the part of the error that hints that

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 138

the object is of the wrong class (in this case: nil). It's a mistake that's easily avoided by reading error messages in
their entirety.

Summary:

Always carefully read the entire error message before beginning any debugging. That means: Always check the
class type of an object in an error message first, then its methods, before you begin sleuthing into any stacktrace or
line of code where you think the error may be occurring. Those 5 seconds can save you 5 hours of frustration.

tl;dr: Don't squint at print logs: raise exceptions instead. Avoid rabbit holes by reading errors carefully before
debugging.

Section 32.3: Debugging ruby-on-rails application with pry
pry is a powerful tool that can be used to debug any ruby application. Setting up a ruby-on-rails application with
this gem is very easy and straightforward.

Setup

To start debugging your application with pry

Add gem 'pry' to the application's Gemfile and bundle it

group :development, :test do
 gem 'pry'
end

Navigate to the application's root directory on terminal console and run bundle install. You're all set to
start using it anywhere on your application.

Use

Using pry in your application is just including binding.pry on the breakpoints you want to inspect while debugging.
You can add binding.pry breakpoints anywhere in your application that is interpreted by ruby interpreter (any
app/controllers, app/models, app/views files)

i) Debugging a Controller

app/controllers/users_controller.rb

class UsersController < ApplicationController
 def show
 use_id = params[:id]
 // breakpoint to inspect if the action is receiving param as expected
 binding.pry
 @user = User.find(user_id)
 respond_to do |format|
 format.html
 end
 end
end

In this example, the rails server pauses with a pry console at the break-point when you try to visit a page routing to
show action on UsersController. You can inspect params object and make ActiveRecord query on User model from
that breakpoint

https://github.com/pry/pry
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 139

ii) Debugging a View

app/views/users/show.html.haml

%table
 %tbody
 %tr
 %td ID
 %td= @user.id
 %tr
 %td email
 %td= @user.email
 %tr
 %td logged in ?
 %td
 - binding.pry
 - if @user.logged_in?
 %p= "Logged in"
 - else
 %p= "Logged out"

In this example, the break-point pauses with pry console when the users/show page is pre-compiled in the rails
server before sending it back to the client's browser. This break-point allows to debug correctness of
@user.logged_in? when it is misbehaving.

ii) Debugging a Model

app/models/user.rb

class User < ActiveRecord::Base
 def full_name
 binding.pry
 "#{self.first_name} #{self.last_name}"
 end
end

In this example, the break-point can be used to debug User model's instance method full_name when this method
is called from anywhere in the application.

In conclusion, pry is a powerful debugging tool for rails application with easy setup and straightforward debugging
guideline. Give this a try.

Section 32.4: Debugging in your IDE
Every good IDE provides a GUI for interactively debugging Ruby (and thus Rails) applications where you can add
breakpoints, watches, auto pausing on exception and allows you to follow the code execution even step by step,
line by line.

For example, take a look at one of the best Ruby IDE's, RubyMine's debugging features on the picture

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Graphical_user_interface
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 140

http://i.stack.imgur.com/pZQO7.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 141

Chapter 33: Configure Angular with Rails
Section 33.1: Angular with Rails 101
Step 1: Create a new Rails app
gem install rails -v 4.1
rails new angular_example

Step 2: Remove Turbolinks

Removing turbolinks requires removing it from the Gemfile.

gem 'turbolinks'

Remove the require from app/assets/javascripts/application.js:

//= require turbolinks

Step 3: Add AngularJS to the asset pipeline

In order to get Angular to work with the Rails asset pipeline we need to add to the Gemfile:

gem 'angular-rails-templates'
gem 'bower-rails'

Now run the command

bundle install

Add bower so that we can install the AngularJS dependency:

rails g bower_rails:initialize json

Add Angular to bower.json:

{
 "name": "bower-rails generated dependencies",

 "dependencies": {

 "angular": "latest",
 "angular-resource": "latest",
 "bourbon": "latest",
 "angular-bootstrap": "latest",
 "angular-ui-router": "latest"
 }
}

Now that bower.json is setup with the right dependencies, let’s install them:

bundle exec rake bower:install

Step 4: Organize the Angular app

Create the following folder structure in app/assets/javascript/angular-app/:

templates/

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 142

modules/
filters/
directives/
models/
services/
controllers/

In app/assets/javascripts/application.js, add require for Angular, the template helper, and the Angular app
file structure. Like this:

//= require jquery
//= require jquery_ujs

//= require angular
//= require angular-rails-templates
//= require angular-app/app

//= require_tree ./angular-app/templates
//= require_tree ./angular-app/modules
//= require_tree ./angular-app/filters
//= require_tree ./angular-app/directives
//= require_tree ./angular-app/models
//= require_tree ./angular-app/services
//= require_tree ./angular-app/controllers

Step 5: Bootstrap the Angular app

Create app/assets/javascripts/angular-app/app.js.coffee:

@app = angular.module('app', ['templates'])

@app.config(['$httpProvider', ($httpProvider)->
$httpProvider.defaults.headers.common['X-CSRF-Token'] = $('meta[name=csrftoken]').attr('content')
]) @app.run(-> console.log 'angular app running')

Create an Angular module at app/assets/javascripts/angular-app/modules/example.js.coffee.erb:

@exampleApp = angular.module('app.exampleApp', [# additional dependencies here]) .run(->
 console.log 'exampleApp running')

Create an Angular controller for this app at app/assets/javascripts/angular-
app/controllers/exampleCtrl.js.coffee:

angular.module('app.exampleApp').controller("ExampleCtrl", ['$scope', ($scope)->
console.log 'ExampleCtrl running' $scope.exampleValue = "Hello angular and rails"])

Now add a route to Rails to pass control over to Angular. Inconfig/routes.rb:

Rails.application.routes.draw do get 'example' => 'example#index' end

Generate the Rails controller to respond to that route:

rails g controller Example

In app/controllers/example_controller.rb:

class ExampleController < ApplicationController
 def index

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 143

 end
end

In the view, we need to specify which Angular app and which Angular controller will drive this page. So in
app/views/example/index.html.erb:

<div ng-app='app.exampleApp' ng-controller='ExampleCtrl'>

 <p>Value from ExampleCtrl:</p>
 <p>{{ exampleValue }}</p>

</div>

To view the app, start your Rails server and visit http://localhost:3000/example.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 144

Chapter 34: Rails logger
Section 34.1: Rails.logger
Always use Rails.logger.{debug|info|warn|error|fatal} rather than puts. This allows your logs to fit into the
standard log format, have a timestamp and have a level so you choose whether they are important enough to be
shown in a specific environment. You can see the separate log files for your application under log/ directory with
your rails app environment name. like: development.log or production.log or staging.log

You can easily rotating rails production logs with LogRotate.You just have to do small configuration as below

Open /etc/logrotate.conf with your favourite linux editor vim or nano and add the below code in this file at
bottom.

/YOUR/RAILSAPP/PATH/log/*.log {
 daily
 missingok
 rotate 7
 compress
 delaycompress
 notifempty
 copytruncate
}

So, How It Works This is fantastically easy. Each bit of the configuration does the following:

daily – Rotate the log files each day. You can also use weekly or monthly here instead.
missingok – If the log file doesn’t exist,ignore it
rotate 7 – Only keep 7 days of logs around
compress – GZip the log file on rotation
delaycompress – Rotate the file one day, then compress it the next day so we can be sure that it won’t
interfere with the Rails server
notifempty – Don’t rotate the file if the logs are empty
copytruncate – Copy the log file and then empties it. This makes sure that the log file Rails is writing to
always exists so you won’t get problems because the file does not actually change. If you don’t use this, you
would need to restart your Rails application each time.

Running Logrotate Since we just wrote this configuration, you want to test it.

To run logrotate manually, just do: sudo /usr/sbin/logrotate -f /etc/logrotate.conf

That's it.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 145

Chapter 35: Prawn PDF
Section 35.1: Advanced Example
This is the advanced approach with example

class FundsController < ApplicationController

 def index
 @funds = Fund.all_funds(current_user)
 end

 def show
 @fund = Fund.find(params[:id])
 respond_to do |format|
 format.html
 format.pdf do
 pdf = FundsPdf.new(@fund, view_context)
 send_data pdf.render, filename:
 "fund_#{@fund.created_at.strftime("%d/%m/%Y")}.pdf",
 type: "application/pdf"
 end
 end
 end
end

I above code we have this line FundsPdf.new(@fund, view_context). Here we are initializing FundsPdf class with
@fund instance and view_context to use helper methods in FundsPdf. FundsPdf wuld look like this

 class FundPdf < Prawn::Document

 def initialize(fund, view)
 super()
 @fund = fund
 @view = view
 upper_half
 lower_half
 end

 def upper_half
 logopath = "#{Rails.root}/app/assets/images/logo.png"
 image logopath, :width => 197, :height => 91
 move_down 10
 draw_text "Receipt", :at => [220, 575], size: 22
 move_down 80
 text "Hello #{@invoice.customer.profile.first_name.capitalize},"
 end

 def thanks_message
 move_down 15
 text "Thank you for your order.Print this receipt as
 confirmation of your order.",
 :indent_paragraphs => 40, :size => 13
 end
end

This is one of the best approach to generate PDF with classes using Prawn gem.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 146

Section 35.2: Basic Example
You need to add Gem and PDF MIME:Type inside mime_types.rb as we need to notify rails about PDF mime type.

After that we can generate Pdf with Prawn in following basic ways

This is the basic assignment
pdf = Prawn::Document.new
pdf.text "Hello World"
pdf.render_file "assignment.pdf"

We can do it with Implicit Block
Prawn::Document.generate("implicit.pdf") do
 text "Hello World"
end

With Explicit Block
Prawn::Document.generate("explicit.pdf") do |pdf|
 pdf.text "Hello World"
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 147

Chapter 36: Rails API
Section 36.1: Creating an API-only application
To build a Rails application that will be an API server, you can start with a more limited subset of Rails in Rails 5.

To generate a new Rails API app:

rails new my_api --api

What --api does is to remove functionality that is not needed when building an API. This includes sessions, cookies,
assets, and anything that makes Rails work on a browser.

It will also configure the generators so that they don't generate views, helpers, and assets when generating a new
resource.

When you compare the ApplicationController on a web app versus an API app, you will see that the web version
extends from ActionController::Base, whereas the API version extends from ActionController::API, which
includes a much smaller subset of functionality.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 148

Chapter 37: Deploying a Rails app on
Heroku
Section 37.1: Deploying your application
Make sure you are in the directory that contains your Rails app, then create an app on Heroku.

$ heroku create example
Creating � example... done
https://example.herokuapp.com/ | https://git.heroku.com/example.git

The first URL of the ouput, http://example.herokuapp.com, is the location the app is available at. The second URL,
git@heroku.com:example.git, is the remote git repository URL.

This command should only be used on an initialized git repository. The heroku create command automatically adds
a git remote named “heroku” pointing at this URL.

The app name argument (“example”) is optional. If no app name is specified, a random name will be generated.
Since Heroku app names are in a global namespace, you can expect that common names, like “blog” or “wiki”, will
already be taken. It’s often easier to start with a default name and rename the app later.

Next, deploy your code:

$ git push heroku master
remote: Compressing source files... done.
remote: Building source:
remote:
remote: -----> Ruby app detected
remote: -----> Compiling Ruby/Rails
remote: -----> Using Ruby version: ruby-2.3.1
remote: -----> Installing dependencies using bundler 1.11.2
remote: Running: bundle install --without development:test --path vendor/bundle --binstubs
vendor/bundle/bin -j4 --deployment
remote: Warning: the running version of Bundler is older than the version that created the
lockfile. We suggest you upgrade to the latest version of Bundler by running `gem install bundler`.
remote: Fetching gem metadata from https://rubygems.org/..........
remote: Fetching version metadata from https://rubygems.org/...
remote: Fetching dependency metadata from https://rubygems.org/..
remote: Installing concurrent-ruby 1.0.2
remote: Installing i18n 0.7.0
remote: Installing rake 11.2.2
remote: Installing minitest 5.9.0
remote: Installing thread_safe 0.3.5
remote: Installing builder 3.2.2
remote: Installing mini_portile2 2.1.0
remote: Installing erubis 2.7.0
remote: Installing pkg-config 1.1.7
remote: Installing rack 2.0.1
remote: Installing nio4r 1.2.1 with native extensions
remote: Installing websocket-extensions 0.1.2
remote: Installing mime-types-data 3.2016.0521
remote: Installing arel 7.0.0
remote: Installing coffee-script-source 1.10.0
remote: Installing execjs 2.7.0
remote: Installing method_source 0.8.2
remote: Installing thor 0.19.1
remote: Installing multi_json 1.12.1

http://example.herokuapp.com
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 149

remote: Installing puma 3.4.0 with native extensions
remote: Installing pg 0.18.4 with native extensions
remote: Using bundler 1.11.2
remote: Installing sass 3.4.22
remote: Installing tilt 2.0.5
remote: Installing turbolinks-source 5.0.0
remote: Installing tzinfo 1.2.2
remote: Installing nokogiri 1.6.8 with native extensions
remote: Installing rack-test 0.6.3
remote: Installing sprockets 3.6.3
remote: Installing websocket-driver 0.6.4 with native extensions
remote: Installing mime-types 3.1
remote: Installing coffee-script 2.4.1
remote: Installing uglifier 3.0.0
remote: Installing turbolinks 5.0.0
remote: Installing activesupport 5.0.0
remote: Installing mail 2.6.4
remote: Installing globalid 0.3.6
remote: Installing activemodel 5.0.0
remote: Installing jbuilder 2.5.0
remote: Installing activejob 5.0.0
remote: Installing activerecord 5.0.0
remote: Installing loofah 2.0.3
remote: Installing rails-dom-testing 2.0.1
remote: Installing rails-html-sanitizer 1.0.3
remote: Installing actionview 5.0.0
remote: Installing actionpack 5.0.0
remote: Installing actionmailer 5.0.0
remote: Installing railties 5.0.0
remote: Installing actioncable 5.0.0
remote: Installing sprockets-rails 3.1.1
remote: Installing coffee-rails 4.2.1
remote: Installing jquery-rails 4.1.1
remote: Installing rails 5.0.0
remote: Installing sass-rails 5.0.5
remote: Bundle complete! 15 Gemfile dependencies, 54 gems now installed.
remote: Gems in the groups development and test were not installed.
remote: Bundled gems are installed into ./vendor/bundle.
remote: Bundle completed (31.86s)
remote: Cleaning up the bundler cache.
remote: Warning: the running version of Bundler is older than the version that created the
lockfile. We suggest you upgrade to the latest version of Bundler by running `gem install bundler`.
remote: -----> Preparing app for Rails asset pipeline
remote: Running: rake assets:precompile
remote: I, [2016-07-08T17:08:57.046245 #1222] INFO -- : Writing
/tmp/build_49ba6c877f5502cd4029406e981f90b4/public/assets/application-1bf5315c71171ad5f9cbef00193d56b
7e45263ddc64caf676ce988cfbb6570bd.js
remote: I, [2016-07-08T17:08:57.046951 #1222] INFO -- : Writing
/tmp/build_49ba6c877f5502cd4029406e981f90b4/public/assets/application-1bf5315c71171ad5f9cbef00193d56b
7e45263ddc64caf676ce988cfbb6570bd.js.gz
remote: I, [2016-07-08T17:08:57.060208 #1222] INFO -- : Writing
/tmp/build_49ba6c877f5502cd4029406e981f90b4/public/assets/application-
e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855.css
remote: I, [2016-07-08T17:08:57.060656 #1222] INFO -- : Writing
/tmp/build_49ba6c877f5502cd4029406e981f90b4/public/assets/application-
e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855.css.gz
remote: Asset precompilation completed (4.06s)
remote: Cleaning assets
remote: Running: rake assets:clean
remote:
remote: ###### WARNING:
remote: No Procfile detected, using the default web server.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 150

remote: We recommend explicitly declaring how to boot your server process via a Procfile.
remote: https://devcenter.heroku.com/articles/ruby-default-web-server
remote:
remote: -----> Discovering process types
remote: Procfile declares types -> (none)
remote: Default types for buildpack -> console, rake, web, worker
remote:
remote: -----> Compressing...
remote: Done: 29.2M
remote: -----> Launching...
remote: Released v5
remote: https://example.herokuapp.com/ deployed to Heroku
remote:
remote: Verifying deploy... done.
To https://git.heroku.com/example.git
 * [new branch] master -> master

If you are using the database in your application you need to manually migrate the database by running:

$ heroku run rake db:migrate

Any commands after heroku run will be executed on a Heroku dyno. You can obtain an interactive shell session by
running:

$ heroku run bash

Ensure you have one dyno running the web process type:

$ heroku ps:scale web=1

The heroku ps command lists the running dynos of your application:

$ heroku ps
=== web (Standard-1X): bin/rails server -p $PORT -e $RAILS_ENV (1)
web.1: starting 2016/07/08 12:09:06 -0500 (~ 2s ago)

You can now visit the app in our browser with heroku open.

$ heroku open

Heroku gives you a default web URL in the herokuapp.com domain. When you are ready to scale up for production,
you can add your own custom domain.

Section 37.2: Managing Production and staging environments
for a Heroku
Every Heroku app runs in at least two environments: on Heroku (we’ll call that production) and on your local
machine (development). If more than one person is working on the app, then you’ve got multiple development
environments - one per machine, usually. Usually, each developer will also have a test environment for running
tests. Unfortunately, this approach breaks down as the environments become less similar. Windows and Macs, for
instance, both provide different environments than the Linux stack on Heroku, so you can’t always be sure that
code that works in your local development environment will work the same way when you deploy it to production.

The solution is to have a staging environment that is as similar to production as is possible. This can be achieved by
creating a second Heroku application that hosts your staging application. With staging, you can check your code in a

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 151

production-like setting before having it affect your actual users.

Starting from scratch

Assume you have an application running on your local machine, and you’re ready to push it to Heroku. We’ll need
to create both remote environments, staging and production. To get in the habit of pushing to staging first, we’ll
start with this:

$ heroku create --remote staging
Creating strong-river-216.... done
http://strong-river-216.heroku.com/ | https://git.heroku.com/strong-river-216.git
Git remote staging added

By default, the heroku CLI creates projects with a heroku git remote. Here, we’re specifying a different name with
the --remote flag, so pushing code to Heroku and running commands against the app look a little different than the
normal git push heroku master:

 $ git push staging master
...
 $ heroku ps --remote staging
=== web: `bundle exec puma -C config/puma.rb``
web.1: up for 21s

Once your staging app is up and running properly, you can create your production app:

$ heroku create --remote production
Creating fierce-ice-327.... done
http://fierce-ice-327.heroku.com/ | https://git.heroku.com/fierce-ice-327.git
Git remote production added
$ git push production master
...
$ heroku ps --remote production
=== web: `bundle exec puma -C config/puma.rb
web.1: up for 16s

And with that, you’ve got the same codebase running as two separate Heroku apps – one staging and one
production, set up identically. Just remember you will have to specify which app you are going to operate on your
daily work. You can either use flag '--remote' or use your git config to specify a default app.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 152

Chapter 38: ActiveSupport
Section 38.1: Core Extensions: String Access
String#at

Returns a substring of a string object. Same interface as String#[].

str = "hello"
str.at(0) # => "h"
str.at(1..3) # => "ell"
str.at(-2) # => "l"
str.at(-2..-1) # => "lo"
str.at(5) # => nil
str.at(5..-1) # => ""

String#from

Returns a substring from the given position to the end of the string.

str = "hello"
str.from(0) # => "hello"
str.from(3) # => "lo"
str.from(-2) # => "lo"

String#to

Returns a substring from the beginning of the string to the given position.
If the position is negative, it is counted from the end of the string.

str = "hello"
str.to(0) # => "h"
str.to(3) # => "hell"
str.to(-2) # => "hell"

from and to can be used in tandem.

str = "hello"
str.from(0).to(-1) # => "hello"
str.from(1).to(-2) # => "ell"

String#first

Returns the first character, or a given number of characters up to the length of the string.

str = "hello"
str.first # => "h"
str.first(1) # => "h"
str.first(2) # => "he"
str.first(0) # => ""
str.first(6) # => "hello"

String#last

Returns the last character, or a given number of characters from the end of the string counting backwards.

str = "hello"
str.last # => "o"
str.last(1) # => "o"

https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/access.rb#L27-L29
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/access.rb#L44-L46
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/access.rb#L61-L63
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/access.rb#L75-L83
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/access.rb#L95-L103
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 153

str.last(2) # => "lo"
str.last(0) # => ""
str.last(6) # => "hello"

Section 38.2: Core Extensions: String to Date/Time Conversion
String#to_time

Converts a string to a Time value. The form parameter can be either :utc or :local, defaults to :local.

"13-12-2012".to_time # => 2012-12-13 00:00:00 +0100
"06:12".to_time # => 2012-12-13 06:12:00 +0100
"2012-12-13 06:12".to_time # => 2012-12-13 06:12:00 +0100
"2012-12-13T06:12".to_time # => 2012-12-13 06:12:00 +0100
"2012-12-13T06:12".to_time(:utc) # => 2012-12-13 06:12:00 UTC
"12/13/2012".to_time # => ArgumentError: argument out of range

String#to_date

Converts a string to a Date value.

"1-1-2012".to_date # => Sun, 01 Jan 2012
"01/01/2012".to_date # => Sun, 01 Jan 2012
"2012-12-13".to_date # => Thu, 13 Dec 2012
"12/13/2012".to_date # => ArgumentError: invalid date

String#to_datetime

Converts a string to a DateTime value.

"1-1-2012".to_datetime # => Sun, 01 Jan 2012 00:00:00 +0000
"01/01/2012 23:59:59".to_datetime # => Sun, 01 Jan 2012 23:59:59 +0000
"2012-12-13 12:50".to_datetime # => Thu, 13 Dec 2012 12:50:00 +0000
"12/13/2012".to_datetime # => ArgumentError: invalid date

Section 38.3: Core Extensions: String Exclusion
String#exclude?

The inverse of String#include?

"hello".exclude? "lo" # => false
"hello".exclude? "ol" # => true
"hello".exclude? ?h # => false

Section 38.4: Core Extensions: String Filters
String#squish

Returns a version of the given string without leading or trailing whitespace, and combines all consecutive
whitespace in the interior to single spaces. Destructive version squish! operates directly on the string instance.

Handles both ASCII and Unicode whitespace.

%{ Multi-line
 string }.squish # => "Multi-line string"
" foo bar \n \t boo".squish # => "foo bar boo"

https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/conversions.rb#L19-L36
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/conversions.rb#L44-L46
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/conversions.rb#L54-L56
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/exclude.rb#L8-L10
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/filters.rb#L11-L13
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 154

String#remove

Returns a new string with all occurrences of the patterns removed. Destructive version remove! operates directly on
the given string.

str = "foo bar test"
str.remove(" test") # => "foo bar"
str.remove(" test", /bar/) # => "foo "

String#truncate

Returns a copy of a given string truncated at a given length if the string is longer than the length.

'Once upon a time in a world far far away'.truncate(27)
=> "Once upon a time in a wo..."

Pass a string or regexp :separator to truncate at a natural break

'Once upon a time in a world far far away'.truncate(27, separator: ' ')
=> "Once upon a time in a..."

'Once upon a time in a world far far away'.truncate(27, separator: /\s/)
=> "Once upon a time in a..."

String#truncate_words

Returns a string truncated after a given number of words.

'Once upon a time in a world far far away'.truncate_words(4)
=> "Once upon a time..."

Pass a string or regexp to specify a different separator of words

'Once
upon
a
time
in
a
world'.truncate_words(5, separator: '
')
=> "Once
upon
a
time
in..."

The last characters will be replaced with the :omission string (defaults to "...")

'And they found that many people were sleeping better.'.truncate_words(5, omission: '...
(continued)')
=> "And they found that many... (continued)"

String#strip_heredoc

Strips indentation in heredocs. Looks for the least-indented non-empty line and removes that amount of leading
whitespace.

if options[:usage]
 puts <<-USAGE.strip_heredoc
 This command does such and such.

 Supported options are:
 -h This message
 ...
 USAGE
end

the user would see

https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/filters.rb#L30-L32
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/filters.rb#L64-L77
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/filters.rb#L93-L101
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/strip.rb#L20-L22
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 155

NO_FORMAT]This command does such and such. Supported options are: -h This message ...

Section 38.5: Core Extensions: String Inflection
String#pluralize

Returns of plural form of the string. Optionally takes a count parameter and returns singular form if count == 1.
Also accepts a locale parameter for language-specific pluralization.

'post'.pluralize # => "posts"
'octopus'.pluralize # => "octopi"
'sheep'.pluralize # => "sheep"
'words'.pluralize # => "words"
'the blue mailman'.pluralize # => "the blue mailmen"
'CamelOctopus'.pluralize # => "CamelOctopi"
'apple'.pluralize(1) # => "apple"
'apple'.pluralize(2) # => "apples"
'ley'.pluralize(:es) # => "leyes"
'ley'.pluralize(1, :es) # => "ley"

String#singularize

Returns the singular form of the string. Accepts an optional locale parameter.

'posts'.singularize # => "post"
'octopi'.singularize # => "octopus"
'sheep'.singularize # => "sheep"
'word'.singularize # => "word"
'the blue mailmen'.singularize # => "the blue mailman"
'CamelOctopi'.singularize # => "CamelOctopus"
'leyes'.singularize(:es) # => "ley"

String#constantize

Tries to find a declared constant with the name specified in the string. It raises a NameError when the name is not in
CamelCase or is not initialized.

'Module'.constantize # => Module
'Class'.constantize # => Class
'blargle'.constantize # => NameError: wrong constant name blargle

String#safe_constantize

Performs a constantize but returns nil instead of raising NameError.

'Module'.safe_constantize # => Module
'Class'.safe_constantize # => Class
'blargle'.safe_constantize # => nil

String#camelize

Converts strings to UpperCamelCase by default, if :lower is given as param converts to lowerCamelCase instead.

alias: camelcase

Note: will also convert / to :: which is useful for converting paths to namespaces.

'active_record'.camelize # => "ActiveRecord"
'active_record'.camelize(:lower) # => "activeRecord"
'active_record/errors'.camelize # => "ActiveRecord::Errors"

https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/inflections.rb#L31-L38
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/inflections.rb#L54-L56
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/inflections.rb#L65-L67
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/inflections.rb#L76-L78
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/inflections.rb#L89-L97
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 156

'active_record/errors'.camelize(:lower) # => "activeRecord::Errors"

String#titleize

Capitalizes all the words and replaces some characters in the string to create a nicer looking title.

alias: titlecase

'man from the boondocks'.titleize # => "Man From The Boondocks"
'x-men: the last stand'.titleize # => "X Men: The Last Stand"

String#underscore

Makes an underscored, lowercase form from the expression in the string. The reverse of camelize.

Note: underscore will also change :: to / to convert namespaces to paths.

'ActiveModel'.underscore # => "active_model"
'ActiveModel::Errors'.underscore # => "active_model/errors"

String#dasherize

Replaces underscores with dashes in the string.

'puni_puni'.dasherize # => "puni-puni"

String#demodulize

Removes the module part from the constant expression in the string.

'ActiveRecord::CoreExtensions::String::Inflections'.demodulize # => "Inflections"
'Inflections'.demodulize # => "Inflections"
'::Inflections'.demodulize # => "Inflections"
''.demodulize # => ''

String#deconstantize

Removes the rightmost segment from the constant expression in the string.

'Net::HTTP'.deconstantize # => "Net"
'::Net::HTTP'.deconstantize # => "::Net"
'String'.deconstantize # => ""
'::String'.deconstantize # => ""
''.deconstantize # => ""

String#parameterize

Replaces special characters in a string so that it may be used as part of a 'pretty' URL.

"Donald E. Knuth".parameterize # => "donald-e-knuth"

Preserve the case of the characters in a string with the :preserve_case argument.

"Donald E. Knuth".parameterize(preserve_case: true) # => "Donald-E-Knuth"

A very common use-case for parameterize is to override the to_param method of an ActiveRecord model to
support more descriptive url slugs.

class Person < ActiveRecord::Base
 def to_param
 "#{id}-#{name.parameterize}"

https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/inflections.rb#L107-L110
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/inflections.rb#L118-L120
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/inflections.rb#L125-L127
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/inflections.rb#L137-L139
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/inflections.rb#L150-L152
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/inflections.rb#L181-L187
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 157

 end
end

Person.find(1).to_param # => "1-donald-e-knuth"

String#tableize

Creates the name of a table like Rails does for models to table names. Pluralizes the last word in the string.

'RawScaledScorer'.tableize # => "raw_scaled_scorers"
'ham_and_egg'.tableize # => "ham_and_eggs"
'fancyCategory'.tableize # => "fancy_categories"

String#classify

Returns a class name string from a plural table name like Rails does for table names to models.

'ham_and_eggs'.classify # => "HamAndEgg"
'posts'.classify # => "Post"

String#humanize

Capitalizes the first word, turns underscores into spaces, and strips a trailing _id if present.

'employee_salary'.humanize # => "Employee salary"
'author_id'.humanize # => "Author"
'author_id'.humanize(capitalize: false) # => "author"
'_id'.humanize # => "Id"

String#upcase_first

Converts just the first character to uppercase.

'what a Lovely Day'.upcase_first # => "What a Lovely Day"
'w'.upcase_first # => "W"
''.upcase_first # => ""

String#foreign_key

Creates a foreign key name from a class name. Pass false param to disable adding _ between name and id.

'Message'.foreign_key # => "message_id"
'Message'.foreign_key(false) # => "messageid"
'Admin::Post'.foreign_key # => "post_id"

https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/inflections.rb#L195-L197
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/inflections.rb#L205-L207
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/inflections.rb#L221-L223
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/inflections.rb#L230-L232
https://github.com/rails/rails/blob/v5.0.0/activesupport/lib/active_support/core_ext/string/inflections.rb#L241-L243
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 158

Chapter 39: Form Helpers
Rails provides view helpers for generating form markup.

Section 39.1: Creating a search form
To create a search form, enter the following code

<%= form_tag("/search", method: "get") do %>
 <%= label_tag(:q, "Search for:") %>
 <%= text_field_tag(:q) %>
 <%= submit_tag("Search") %>
<% end %>

form_tag: This is the default helper for creating a form. It's first parameter, /search is the action and the
second parameter specifies the HTTP method. For search forms, it is important to always use the method get
label_tag: This helper creates an html <label> tag.
text_field_tag: This will create an input element with type text
submit_tag: This creates an input element with type submit

Section 39.2: Dropdown
Standard example:

@models = Model.all
select_tag "models", options_from_collection_for_select(@models, "id", "name"), {}

This will generate the following HTML: David

The last argument are options, which accepts the following:

{
multiple: false,
disabled: false,
include_blank: false,
prompt: false
}

More examples can be found: http://apidock.com/rails/ActionView/Helpers/FormTagHelper/select_tag

Section 39.3: Helpers for form elements
Checkboxes
<%= check_box_tag(:pet_dog) %>
<%= label_tag(:pet_dog, "I own a dog") %>
<%= check_box_tag(:pet_cat) %>
<%= label_tag(:pet_cat, "I own a cat") %>

This will generate the following html

<input id="pet_dog" name="pet_dog" type="checkbox" value="1" />
<label for="pet_dog">I own a dog</label>
<input id="pet_cat" name="pet_cat" type="checkbox" value="1" />

http://apidock.com/rails/ActionView/Helpers/FormTagHelper/select_tag
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 159

<label for="pet_cat">I own a cat</label>

Radio Buttons
<%= radio_button_tag(:age, "child") %>
<%= label_tag(:age_child, "I am younger than 18") %>
<%= radio_button_tag(:age, "adult") %>
<%= label_tag(:age_adult, "I'm over 18") %>

This generates the following HTML

<input id="age_child" name="age" type="radio" value="child" />
<label for="age_child">I am younger than 18</label>
<input id="age_adult" name="age" type="radio" value="adult" />
<label for="age_adult">I'm over 18</label>

Text Area

To create a larger text box, it is recommended to use the text_area_tag

<%= text_area_tag(:message, "This is a longer text field", size: "25x6") %>

This will create the following HTML

<textarea id="message" name="message" cols="25" rows="6">This is a longer text field</textarea>

Number Field

This will create an input<type="number"> element

<%= number_field :product, :rating %>

To specify a range of values, we can use the in: option

<%= number_field :product, :rating, in: 1..10 %>

Password Field

Sometimes you want the characters typed by the user to be masked. This will generate an <input
type="password">

<%= password_field_tag(:password) %>

Email Field

This will create an <input type="email">

<%= email_field(:user, :email) %>

Telephone Field

This will create an <input type="tel">.

<%= telephone_field :user, :phone %>

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 160

Date Helpers

input[type="date"]

<%= date_field(:user, :reservation) %>

input[type="week"]

 <%= week_field(:user, :reservation) %>

input[type="year"]

 <%= year_field(:user, :reservation) %>

input[type="time"]

 <%= time_field(:user, :check_in) %>

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 161

Chapter 40: ActiveRecord Transactions
Section 40.1: Basic example
For example:

ActiveRecord::Base.transaction do
 david.withdrawal(100)
 mary.deposit(100)
end

This example will only take money from David and give it to Mary if neither withdrawal nor deposit raise an
exception. Exceptions will force a ROLLBACK that returns the database to the state before the transaction began.
Be aware, though, that the objects will not have their instance data returned to their pre-transactional state.

Section 40.2: Dierent ActiveRecord classes in a single
transaction
Though the transaction class method is called on some ActiveRecord class, the objects within the transaction block
need not all be instances of that class. This is because transactions are per-database connection, not per-model.

In this example a balance record is transactionally saved even though transaction is called on the Account class:

Account.transaction do
 balance.save!
 account.save!
end

The transaction method is also available as a model instance method. For example, you can also do this:

balance.transaction do
 balance.save!
 account.save!
end

Section 40.3: Multiple database connections
A transaction acts on a single database connection. If you have multiple class-specific databases, the transaction
will not protect interaction among them. One workaround is to begin a transaction on each class whose models you
alter:

Student.transaction do
 Course.transaction do
 course.enroll(student)
 student.units += course.units
 end
end

This is a poor solution, but fully distributed transactions are beyond the scope of ActiveRecord.

Section 40.4: save and destroy are automatically wrapped in
a transaction
Both #save and #destroy come wrapped in a transaction that ensures that whatever you do in validations or

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 162

callbacks will happen under its protected cover. So you can use validations to check for values that the transaction
depends on or you can raise exceptions in the callbacks to rollback, including after_* callbacks.

As a consequence changes to the database are not seen outside your connection until the operation is complete.
For example, if you try to update the index of a search engine in after_save the indexer won't see the updated
record. The after_commit callback is the only one that is triggered once the update is committed.

Section 40.5: Callbacks
There are two types of callbacks associated with committing and rolling back transactions: after_commit and
after_rollback.

after_commit callbacks are called on every record saved or destroyed within a transaction immediately after the
transaction is committed. after_rollback callbacks are called on every record saved or destroyed within a
transaction immediately after the transaction or savepoint is rolled back.

These callbacks are useful for interacting with other systems since you will be guaranteed that the callback is only
executed when the database is in a permanent state. For example, after_commit is a good spot to put in a hook to
clearing a cache since clearing it from within a transaction could trigger the cache to be regenerated before the
database is updated.

Section 40.6: Rolling back a transaction
ActiveRecord::Base.transaction uses the ActiveRecord::Rollback exception to distinguish a deliberate rollback
from other exceptional situations. Normally, raising an exception will cause the .transaction method to rollback
the database transaction and pass on the exception. But if you raise an ActiveRecord::Rollback exception, then
the database transaction will be rolled back, without passing on the exception.

For example, you could do this in your controller to rollback a transaction:

class BooksController < ActionController::Base
 def create
 Book.transaction do
 book = Book.new(params[:book])
 book.save!
 if today_is_friday?
 # The system must fail on Friday so that our support department
 # won't be out of job. We silently rollback this transaction
 # without telling the user.
 raise ActiveRecord::Rollback, "Call tech support!"
 end
 end
 # ActiveRecord::Rollback is the only exception that won't be passed on
 # by ActiveRecord::Base.transaction, so this line will still be reached
 # even on Friday.
 redirect_to root_url
 end
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 163

Chapter 41: RSpec and Ruby on Rails
Section 41.1: Installing RSpec
If you want to use RSpec for a Rails project, you should use the rspec-rails gem, which can generate helpers and
spec files for you automatically (for example, when you create models, resources or scaffolds using rails
generate).

Add rspec-rails to both the :development and :test groups in the Gemfile:

group :development, :test do
 gem 'rspec-rails', '~> 3.5'
end

Run bundle to install the dependencies.

Initialize it with:

rails generate rspec:install

This will create a spec/ folder for your tests, along with the following configuration files:

.rspec contains default options for the command-line rspec tool
spec/spec_helper.rb includes basic RSpec configuration options
spec/rails_helper.rb adds further configuration options that are more specific to use RSpec and Rails
together.

All these files are written with sensible defaults to get you started, but you can add features and change
configurations to suit your needs as your test suite grows.

https://rubygems.org/gems/rspec-rails
https://rubygems.org/gems/rspec-rails
https://rubygems.org/gems/rspec-rails
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 164

Chapter 42: Decorator pattern
Section 42.1: Decorating a Model using Draper
Draper automatically matches up models with their decorators by convention.

app/decorators/user_decorator.rb
class UserDecorator < Draper::Decorator
 def full_name
 "#{object.first_name} #{object.last_name}"
 end

 def created_at
 Time.use_zone(h.current_user.timezone) do
 object.created_at.strftime("%A, %d %b %Y %l:%M %p")
 end
 end
end

Given a @user variable containing an ActiveRecord object, you can access your decorator by calling #decorate on
the @user, or by specifying the Draper class if you want to be specific.

<% user = @user.decorate %><!-- OR -->
<% user = UserDecorator.decorate(@user) %>
<h1><%= user.full_name %></h1>
<h3>joined: <%= user.created_at %></h3>

Section 42.2: Decorating a Model using SimpleDelegator
Most Rails developers start by modifying their model information within the template itself:

<h1><%= "#{ @user.first_name } #{ @user.last_name }" %></h1>
<h3>joined: <%= @user.created_at.in_time_zone(current_user.timezone).strftime("%A, %d %b %Y %l:%M
%p") %></h3>

For models with a lot of data, this can quickly become cumbersome and lead to copy-pasting logic from one
template to another.

This example uses SimpleDelegator from the stdlib.

All requests to a SimpleDelegator object are passed to the parent object by default. You can override any method
with presentation logic, or you can add new methods that are specific to this view.

SimpleDelegator provides two methods: __setobj__ to set what object is being delegated to, and __getobj__ to
get that object.

class UserDecorator < SimpleDelegator
 attr_reader :view
 def initialize(user, view)
 __setobj__ @user
 @view = view
 end

 # new methods can call methods on the parent implicitly
 def full_name
 "#{ first_name } #{ last_name }"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 165

 end

 # however, if you're overriding an existing method you need
 # to use __getobj__
 def created_at
 Time.use_zone(view.current_user.timezone) do
 __getobj__.created_at.strftime("%A, %d %b %Y %l:%M %p")
 end
 end
end

Some decorators rely on magic to wire-up this behavior, but you can make it more obvious where the presentation
logic is coming from by initializing the object on the page.

<% user = UserDecorator.new(@user, self) %>
<h1><%= user.full_name %></h1>
<h3>joined: <%= user.created_at %></h3>

By passing a reference to the view object into the decorator, we can still access all of the rest of the view helpers
while building the presentation logic without having to include it.

Now the view template is only concerned with inserting data into the page, and it is much more clear.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 166

Chapter 43: Elasticsearch
Section 43.1: Searchkick
If you want to setup quickly elasticsearch you can use the searchkick gem :

gem 'searchkick'

Add searchkick to models you want to search.

class Product < ActiveRecord::Base
 searchkick
end

Add data to the search index.

Product.reindex

And to query, use:

products = Product.search "apples"
products.each do |product|
 puts product.name
end

Pretty quick, elasticsearch knowledge not required ;-)

More information here : https://github.com/ankane/searchkick

Section 43.2: Installation and testing
The first thing you want to do for local development is install ElasticSearch in your machine and test it to see if it is
running. It requires Java to be installed. The installation is pretty straightforward:

Mac OS X: brew install elasticsearch
Ubuntu: sudo apt-get install elasticsearch

Then start it:

Mac OS X: brew services start elasticsearch
Ubuntu: sudo service elasticsearch start

For testing it, the easiest way is with curl. It might take a few seconds for it to start, so don't panic if you don't get
any response at first.

curl localhost:9200

Example response:

{
 "name" : "Hydro-Man",
 "cluster_name" : "elasticsearch_gkbonetti",
 "version" : {
 "number" : "2.3.5",
 "build_hash" : "90f439ff60a3c0f497f91663701e64ccd01edbb4",

https://github.com/ankane/searchkick
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 167

 "build_timestamp" : "2016-07-27T10:36:52Z",
 "build_snapshot" : false,
 "lucene_version" : "5.5.0"
 },
 "tagline" : "You Know, for Search"
}

Section 43.3: Setting up tools for development
When you are getting started with ElasticSearch (ES) it might be good to have a graphical tool that helps you explore
your data. A plugin called elasticsearch-head does just that. To install it, do the following:

Find out in which folder ES is installed: ls -l $(which elasticsearch)
cd into this folder and run the plugin installation binary: elasticsearch/bin/plugin -install
mobz/elasticsearch-head
Open http://localhost:9200/_plugin/head/ in your browser

If everything worked as expected you should be seeing a nice GUI where you can explore your data.

Section 43.4: Introduction
ElasticSearch has a well-documented JSON API, but you'll probably want to use some libraries that handle that for
you:

Elasticsearch - the official low level wrapper for the HTTP API

Elasticsearch-rails - the official high level Rails integration that helps you to connect your Rails models
with ElasticSearch using either ActiveRecord or Repository pattern

Chewy - An alternative, non-official high level Rails integration that is very popular and arguably has better
documentation

Let's use the first option for testing the connection:

gem install elasticsearch

Then fire up the ruby terminal and try it out:

require 'elasticsearch'

client = Elasticsearch::Client.new log: true
by default it connects to http://localhost:9200

client.transport.reload_connections!
client.cluster.health

client.search q: 'test'

http://mobz.github.io/elasticsearch-head/
http://mobz.github.io/elasticsearch-head/
http://mobz.github.io/elasticsearch-head/
https://github.com/elastic/elasticsearch-ruby
https://github.com/elastic/elasticsearch-rails
https://github.com/elastic/elasticsearch-rails
https://github.com/elastic/elasticsearch-rails
https://github.com/toptal/chewy
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 168

Chapter 44: React with Rails using react-
rails gem
Section 44.1: React installation for Rails using rails_react
gem
Add react-rails to your Gemfile:

gem 'react-rails'

And install:

bundle install

Next, run the installation script:

rails g react:install

This will:

create a components.js manifest file and a app/assets/javascripts/components/ directory, where you will put your
components place the following in your application.js:

//= require react
//= require react_ujs
//= require components

Section 44.2: Using react_rails within your application
React.js builds

You can pick which React.js build (development, production, with or without add-ons) to serve in each environment
by adding a config. Here are the defaults:

config/environments/development.rb
MyApp::Application.configure do
 config.react.variant = :development
end

config/environments/production.rb
MyApp::Application.configure do
 config.react.variant = :production
end

To include add-ons, use this config:

MyApp::Application.configure do
 config.react.addons = true # defaults to false
end

After restarting your Rails server, //= require react will provide the build of React.js which was specified by the
configurations.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 169

react-rails offers a few other options for versions & builds of React.js. See VERSIONS.md for more info about using
the react-source gem or dropping in your own copies of React.js.

JSX

After installing react-rails, restart your server. Now, .js.jsx files will be transformed in the asset pipeline.

BabelTransformer options

You can use babel's transformers and custom plugins, and pass options to the babel transpiler adding following
configurations:

config.react.jsx_transform_options = {
 blacklist: ['spec.functionName', 'validation.react', 'strict'], # default options
 optional: ["transformerName"], # pass extra babel options
 whitelist: ["useStrict"] # even more options[enter link description here][1]
}

Under the hood, react-rails uses ruby-babel-transpiler, for transformation.

Section 44.3: Rendering & mounting
react-rails includes a view helper (react_component) and an unobtrusive JavaScript driver (react_ujs) which work
together to put React components on the page. You should require the UJS driver in your manifest after react (and
after turbolinks if you use Turbolinks).

The view helper puts a div on the page with the requested component class & props. For example:

<%= react_component('HelloMessage', name: 'John') %>
<!-- becomes: -->
<div data-react-class="HelloMessage" data-react-props="{"name":"John"}"></div>

On page load, the react_ujs driver will scan the page and mount components using data-react-class and data-react-
props.

If Turbolinks is present components are mounted on the page:change event, and unmounted on page:before-
unload. Turbolinks >= 2.4.0 is recommended because it exposes better events.

In case of Ajax calls, the UJS mounting can be triggered manually by calling from javascript:

ReactRailsUJS.mountComponents() The view helper's signature is:

react_component(component_class_name, props={}, html_options={})

component_class_name is a string which names a globally-accessible component class. It may have dots (eg,
"MyApp.Header.MenuItem").

 `props` is either an object that responds to `#to_json` or an already-stringified JSON object
(eg, made with Jbuilder, see note below).

html_options may include: tag: to use an element other than a div to embed data-react-class and data-react-
props. prerender: true to render the component on the server. **other Any other arguments (eg class:, id:) are
passed through to content_tag.

https://github.com/babel/ruby-babel-transpiler
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 170

Chapter 45: Rails Cookbook - Advanced
rails recipes/learnings and coding
techniques
Section 45.1: Playing with Tables using rails console
View tables

ActiveRecord::Base.connection.tables

Delete any table.

 ActiveRecord::Base.connection.drop_table("users")
------------OR----------------------
ActiveRecord::Migration.drop_table(:users)
------------OR---------------------
ActiveRecord::Base.connection.execute("drop table users")

Remove index from existing column

 ActiveRecord::Migration.remove_index(:users, :name => 'index_users_on_country')

where country is a column name in the migration file with already added index in users table as shown below:

 t.string :country,add_index: true

Remove foreign key constraint

ActiveRecord::Base.connection.remove_foreign_key('food_items', 'menus')

where menus has_many food_items and their respective migrations too.

Add column

ActiveRecord::Migration.remove_column :table_name, :column_name

for example:

 ActiveRecord::Migration.add_column :profiles, :profile_likes, :integer, :default => 0

Section 45.2: Rails methods - returning boolean values
Any method in Rails model can return boolean value.

simple method-

 ##this method return ActiveRecord::Relation
 def check_if_user_profile_is_complete
 User.includes(:profile_pictures,:address,:contact_detail).where("user.id = ?",self)
 end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 171

Again simple method returning boolean value-

 ##this method return Boolean(NOTE THE !! signs before result)
 def check_if_user_profile_is_complete
 !!User.includes(:profile_pictures,:address,:contact_detail).where("user.id = ?",self)
 end

So,the same method will now return boolean instead of anything else :).

Section 45.3: Handling the error - undefined method `where'
for #<Array:0x000000071923f8>
Sometimes we want to use a where query on a a collection of records returned which is not
ActiveRecord::Relation.Hence we get the above error as Where clause is know to ActiveRecord and not to Array.

There is a precise solution for this by using Joins.

EXAMPLE:

Suppose i need to find all user profiles(UserProfile) which are active which is not a user(User) with an
id=10.

UserProfiles.includes(:user=>:profile_pictures]).where(:active=>true).map(&:user).where.not(:id=>10
)

So above query will fail after map as map will return an array which will not work with where clause.

But using joins,will make it work,

UserProfiles.includes(:user=>:profile_pictures]).where(:active=>true).joins(:user).where.not(:id=>1
0)

As joins will output similar records like map but they will be ActiveRecord and not an Array.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 172

Chapter 46: Multipurpose ActiveRecord
columns
Section 46.1: Saving an object
If you have an attribute that needs to be saved and retrieved to database as an object, then specify the name of
that attribute using the serialize method and it will be handled automatically.

The attribute must be declared as a text field.

In the model you must declare the type of the field (Hash or Array)

More info at: serialize >> apidock.com

Section 46.2: How To
In your migration
class Users < ActiveRecord::Migration[5.0]
 def change
 create_table :users do |t|
 ...
 t.text :preference
 t.text :tag
 ...
 t.timestamps
 end
 end
end

In your model
class User < ActiveRecord::Base
 serialize :preferences, Hash
 serialize :tags, Array
end

http://apidock.com/rails/ActiveRecord/Base/serialize/class
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 173

Chapter 47: Class Organization
Section 47.1: Service Class
Controller is an entry point to our application. However, it’s not the only possible entry point. I would like to have
my logic accessible from:

Rake tasks
background jobs
console
tests

If I throw my logic into a controller it won’t be accessible from all these places. So let’s try “skinny controller, fat
model” approach and move the logic to a model. But which one? If a given piece of logic involves User, Cart and
Product models – where should it live?

A class which inherits from ActiveRecord::Base already has a lot of responsibilities. It handles query interface,
associations and validations. If you add even more code to your model it will quickly become an unmaintainable
mess with hundreds of public methods.

A service is just a regular Ruby object. Its class does not have to inherit from any specific class. Its name is a verb
phrase, for example CreateUserAccount rather than UserCreation or UserCreationService. It lives in app/services
directory. You have to create this directory by yourself, but Rails will autoload classes inside for you.

A service object does one thing

A service object (aka method object) performs one action. It holds the business logic to perform that action. Here is
an example:

app/services/accept_invite.rb
class AcceptInvite
 def self.call(invite, user)
 invite.accept!(user)
 UserMailer.invite_accepted(invite).deliver
 end
end

The three conventions I follow are:

Services go under the app/services directory. I encourage you to use subdirectories for business logic-heavy
domains. For instance:

The file app/services/invite/accept.rb will define Invite::Accept while app/services/invite/create.rb
will define Invite::Create
Services start with a verb (and do not end with Service): ApproveTransaction, SendTestNewsletter,
ImportUsersFromCsv
Services respond to the call method. I found using another verb makes it a bit redundant:
ApproveTransaction.approve() does not read well. Also, the call method is the de facto method for
lambda, procs, and method objects.

Benefits

Service objects show what my application does

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 174

I can just glance over the services directory to see what my application does: ApproveTransaction,
CancelTransaction, BlockAccount, SendTransactionApprovalReminder…

A quick look into a service object and I know what business logic is involved. I don’t have to go through the
controllers, ActiveRecord model callbacks and observers to understand what “approving a transaction” involves.

Clean-up models and controllers

Controllers turn the request (params, session, cookies) into arguments, pass them down to the service and redirect
or render according to the service response.

class InviteController < ApplicationController
 def accept
 invite = Invite.find_by_token!(params[:token])
 if AcceptInvite.call(invite, current_user)
 redirect_to invite.item, notice: "Welcome!"
 else
 redirect_to '/', alert: "Oopsy!"
 end
 end
end

Models only deal with associations, scopes, validations and persistence.

class Invite < ActiveRecord::Base
 def accept!(user, time=Time.now)
 update_attributes!(
 accepted_by_user_id: user.id,
 accepted_at: time
)
 end
end

This makes models and controllers much easier to test and maintain!

When to use Service Class

Reach for Service Objects when an action meets one or more of these criteria:

The action is complex (e.g. closing the books at the end of an accounting period)
The action reaches across multiple models (e.g. an e-commerce purchase using Order, CreditCard and
Customer objects)
The action interacts with an external service (e.g. posting to social networks)
The action is not a core concern of the underlying model (e.g. sweeping up outdated data after a certain time
period).
There are multiple ways of performing the action (e.g. authenticating with an access token or password).

Sources

Adam Niedzielski Blog

Brew House Blog

Code Climate Blog

http://blog.sundaycoding.com/blog/2014/11/25/my-take-on-services-in-rails/
http://brewhouse.io/blog/2014/04/30/gourmet-service-objects.html
http://blog.codeclimate.com/blog/2012/10/17/7-ways-to-decompose-fat-activerecord-models/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 175

Section 47.2: Model Class
class Post < ActiveRecord::Base
 belongs_to :user
 has_many :comments

 validates :user, presence: true
 validates :title, presence: true, length: { in: 6..40 }

 scope :topic, -> (topic) { joins(:topics).where(topic: topic) }

 before_save :update_slug
 after_create :send_welcome_email

 def publish!
 update(published_at: Time.now, published: true)
 end

 def self.find_by_slug(slug)
 find_by(slug: slug)
 end

 private

 def update_slug
 self.slug = title.join('-')
 end

 def send_welcome_email
 WelcomeMailer.welcome(self).deliver_now
 end
end

Models are typically responsible for:

setting up relationships
validating data
providing access to data via scopes and methods
Performing actions around persistence of data.

At the highest level, models describe domain concepts and manages their persistence.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 176

Chapter 48: Shallow Routing
Section 48.1: Use of shallow
One way to avoid deep nesting (as recommended above) is to generate the collection actions scoped under the
parent, so as to get a sense of the hierarchy, but to not nest the member actions. In other words, to only build
routes with the minimal amount of information to uniquely identify the resource, like this:

resources :articles, shallow: true do
 resources :comments
 resources :quotes
 resources :drafts
end

The shallow method of the DSL creates a scope inside of which every nesting is shallow. This generates the same
routes as the previous example:

shallow do
 resources :articles do
 resources :comments
 resources :quotes
 resources :drafts
 end
end

There exist two options for scope to customize shallow routes. :shallow_path prefixes member paths with the
specified parameter:

scope shallow_path: "sekret" do
 resources :articles do
 resources :comments, shallow: true
 end
end

Use Rake Command for get generated routes as define below:

rake routes

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 177

Chapter 49: Model states: AASM
Section 49.1: Basic state with AASM
Usually you'll end up creating models which will contain a state, and that state will be changing during the lifespan
of the object.

AASM is a finite state machine enabler library that can help you out with dealing with having an easy passing
through the process design of your objects.

Having something like this in your model goes pretty aligned with the Fat Model, Skinny Controller idea, one of Rails
best practices. The model is the sole responsible of managing its state, its changes and of generating the events
triggered by those changes.

To install, in Gemfile

gem 'aasm'

Consider an App where the user Quotes a product for a price.

class Quote

 include AASM

 aasm do
 state :requested, initial: true # User sees a product and requests a quote
 state :priced # Seller sets the price
 state :payed # Buyer pays the price
 state :canceled # The buyer is not willing to pay the price
 state :completed # The product has been delivered.

 event :price do
 transitions from: requested, to: :priced
 end

 event :pay do
 transitions from: :priced, to: :payed, success: :set_payment_date
 end

 event :complete do
 transitions from: :payed, to: :completed, guard: product_delivered?
 end

 event :cancel do
 transitions from: [:requested, :priced], to: :canceled
 transitions from: :payed, to: canceled, success: :reverse_charges
 end

 end

 private

 def set_payment_date
 update payed_at: Time.zone.now
 end
end

https://github.com/aasm/aasm
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 178

The Quote class' states can go however it's best for your process.

You can think of the states as being past, like in the previous example or algo in other tense, for example: pricing,
paying, delivering, etc. The naming of the states depends on you. From a personal point a view, past states work
better because your end state will surely be a past action and links up better with the event names, which will be
explained later.

NOTE: Be careful what names you use, you have to worry about not using Ruby or Ruby on Rails reserved
keywords, like valid, end, being, etc.

Having defined the states and transitions we can now access some methods created by AASM.

For example:

Quote.priced # Shows all Quotes with priced events
quote.priced? # Indicates if that specific quote has been priced
quote.price! # Triggers the event the would transition from requested to priced.

As you can see the event has transitions, this transitions determine the way the state will change upon the event
call. If the event is invalid due to the current state an Error will be raised.

The events and transitions also have some other callbacks, for example

guard: product_delivered?

Will call the product_delivered? method which will return a boolean. If it turns out false, the transition will not be
applied and if the no other transitions are available, the state won't change.

success: :reverse_charges

If that translation successfully happens the :reverse_charges method will be invoked.

There are several other methods in AASM with more callbacks in the process but this will help you creating your
first models with finite states.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 179

Chapter 50: Rails 5 API Authetication
Section 50.1: Authentication with Rails
authenticate_with_http_token
authenticate_with_http_token do |token, options|
 @user = User.find_by(auth_token: token)
end

You can test this endpoint with curl by making a request like

curl -IH "Authorization: Token token=my-token" http://localhost:3000

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 180

Chapter 51: Testing Rails Applications
Section 51.1: Unit Test
Unit tests test parts of the application in isolation. usually a unit under test is a class or module.

let(:gift) { create :gift }

describe '#find' do
 subject { described_class.find(user, Time.zone.now.to_date) }
 it { is_expected.to eq gift }
end

source

This kind if test is as direct and specific as possible.

Section 51.2: Request Test
Request tests are end to end tests that imitate the behavior of a user.

it 'allows the user to set their preferences' do
 check 'Ruby'
 click_on 'Save and Continue'
 expect(user.languages).to eq ['Ruby']
end

source

This kind of test focuses on user flows and runs through all layers of the system sometimes even rendering
javascript.

https://github.com/24pullrequests/24pullrequests/blob/master/spec/models/gift_spec.rb#L14-L17
https://github.com/24pullrequests/24pullrequests/blob/master/spec/requests/dashboard_spec.rb#L53-L58
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 181

Chapter 52: Active Jobs
Section 52.1: Introduction
Available since Rails 4.2, Active Job is a framework for declaring jobs and making them run on a variety of queuing
backends. Recurring or punctual tasks that are not blocking and can be run in parallel are good use cases for Active
Jobs.

Section 52.2: Sample Job
class UserUnsubscribeJob < ApplicationJob
 queue_as :default

 def perform(user)
 # this will happen later
 user.unsubscribe
 end
end

Section 52.3: Creating an Active Job via the generator
$ rails g job user_unsubscribe

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 182

Chapter 53: Rails frameworks over the
years
When you're new to Rails and working on legacy Rails applications, it can be confusing to understand which
framework was introduced when. This topic is designed to be the definitive list of all frameworks across Rails
versions.

Section 53.1: How to find what frameworks are available in
the current version of Rails?
Use the

config.frameworks

option to get an array of Symbols that represent each framework.

Section 53.2: Rails versions in Rails 1.x
ActionMailer
ActionPack
ActionWebService
ActiveRecord
ActiveSupport
Railties

Section 53.3: Rails frameworks in Rails 2.x
ActionMailer
ActionPack
ActiveRecord
ActiveResource (ActiveWebService was replaced by ActiveResource, and with that, Rails moved from SOAP to REST
by default)
ActiveSupport
Railties

Section 53.4: Rails frameworks in Rails 3.x
ActionMailer
ActionPack
ActiveModel
ActiveRecord
ActiveResource
ActiveSupport
Railties

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 183

Chapter 54: Nested form in Ruby on Rails
Section 54.1: How to setup a nested form in Ruby on Rails
The first to thing to have: a model that contains a has_many relation with another model.

class Project < ApplicationRecord
 has_many :todos
end

class Todo < ApplicationRecord
 belongs_to :project
end

In ProjectsController:

class ProjectsController < ApplicationController
 def new
 @project = Project.new
 end
end

In a nested form, you can create child objects with a parent object at the same time.

<%= nested_form_for @project do |f| %>
 <%= f.label :name %>
 <%= f.text_field :name %>

 <% # Now comes the part for `Todo` object %>
 <%= f.fields_for :todo do |todo_field| %>
 <%= todo_field.label :name %>
 <%= todo_field.text_field :name %>
 <% end %>
<% end %>

As we initialized @project with Project.new to have something for creating a new Project object, same way for
creating a Todo object, we have to have something like this, and there are multiple ways to do so:

In Projectscontroller, in new method, you can write: @todo = @project.todos.build or @todo =1.
@project.todos.new to instantiate a new Todo object.

You can also do this in view: <%= f.fields_for :todos, @project.todos.build %>2.

For strong params, you can include them in the following way:

def project_params
 params.require(:project).permit(:name, todo_attributes: [:name])
end

Since, the Todo objects will be created through the creation of a Project object, so you have to specify this thing in
Project model by adding the following line:

accepts_nested_attributes_for :todos

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 184

Chapter 55: Factory Girl
Section 55.1: Defining Factories
If you have a ActiveRecord User class with name and email attributes, you could create a factory for it by making
the FactoryGirl guess it:

FactoryGirl.define do
 factory :user do # it will guess the User class
 name "John"
 email "john@example.com"
 end
end

Or you can make it explicit and even change its name:

FactoryGirl.define do
 factory :user_jack, class: User do
 name "Jack"
 email "jack@example.com"
 end
end

Then in your spec you can use the FactoryGirl's methods with these, like this:

To create a non saved instance of the User class filled with John's data
build(:user)
and to create a non saved instance of the User class filled with Jack's data
build(:user_jack)

The most common methods are:

Build returns a non saved instance
user = build(:user)

Create returns a saved instance
user = create(:user)

Attributes_for returns a hash of the attributes used to build an instance
attrs = attributes_for(:user)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 185

Chapter 56: Import whole CSV files from
specific folder
In this example, lets say we have many product CSV files in a folder. Each CSV file need to upload our database from
our console write a command. Run the following command in a new or existing project to create this model.

Section 56.1: Uploads CSV from console command
Terminal Commands:

rails g model Product name:string quantity:integer price:decimal{12,2}
rake db:migrate

Lates create controller.

Terminal Commands:

rails g controller Products

Controller Code:

class HistoriesController < ApplicationController
 def create
 file = Dir.glob("#{Rails.root}/public/products/**/*.csv") #=> This folder directory where
read the CSV files
 file.each do |file|
 Product.import(file)
 end
 end
end

Model:

class Product< ApplicationRecord
 def self.import(file)
 CSV.foreach(file.path, headers: true) do |row|
 Product.create! row.to_hash
 end
 end
end

routes.rb

resources :products

app/config/application.rb

require 'csv'

Now open your development console & run

=> ProductsController.new.create #=> Uploads your whole CSV files from your folder directory

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 186

Chapter 57: Tools for Ruby on Rails code
optimization and cleanup
Keeping your code clean and organized while developing a large Rails application can be quite a challenge, even for
an experienced developer. Fortunately, there is a whole category of gems that make this job much easier.

Section 57.1: If you want to keep your code maintainable,
secure and optimized, look at some gems for code
optimization and cleanup :
Bullet

This one particularly blew my mind. The bullet gem helps you kill all the N+1 queries, as well as unnecessarily eager
loaded relations. Once you install it and start visiting various routes in development, alert boxes with warnings
indicating database queries that need to be optimized will pop out. It works right out of the box and is extremely
helpful for optimizing your application.

Rails Best Practices

Static code analyzer for finding Rails specific code smells. It offers a variety of suggestions; use scope access, restrict
auto-generated routes, add database indexes, etc. Nevertheless, it contains lots of nice suggestions that will give
you a better perspective on how to re-factor your code and learn some best practices.

Rubocop

A Ruby static code analyzer which you can use to check if your code complies with the Ruby community code
guidelines. The gem reports style violations through the command line, with lots of useful code refactoring goodies
such as useless variable assignment, redundant use of Object#to_s in interpolation or even unused method
argument.

A good thing is that it's highly configurable, since the analyzer can be quite irritating if you're not following the Ruby
style guide 100% (i.e. you have lots of trailing whitespaces or you double quote your strings even when not
interpolating, etc.).

It's divided into 4 sub-analyzers (called cops): Style, Lint, Metrics and Rails.

https://github.com/flyerhzm/bullet
https://github.com/railsbp/rails_best_practices
https://github.com/bbatsov/rubocop#cops
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 187

Chapter 58: ActiveJob
Active Job is a framework for declaring jobs and making them run on a variety of queuing backends. These jobs can
be everything from regularly scheduled clean-ups, to billing charges, to mailings. Anything that can be chopped up
into small units of work and run in parallel, really.

Section 58.1: Create the Job
class GuestsCleanupJob < ApplicationJob
 queue_as :default

 def perform(*guests)
 # Do something later
 end
end

Section 58.2: Enqueue the Job
Enqueue a job to be performed as soon as the queuing system is free.
GuestsCleanupJob.perform_later guest

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 188

Chapter 59: Active Model Serializers
ActiveModelSerializers, or AMS for short, bring 'convention over configuration' to your JSON generation.
ActiveModelSerializers work through two components: serializers and adapters. Serializers describe which
attributes and relationships should be serialized. Adapters describe how attributes and relationships should be
serialized.

Section 59.1: Using a serializer
class SomeSerializer < ActiveModel::Serializer
 attribute :title, key: :name
 attributes :body
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 189

Chapter 60: Rails Engine - Modular Rails
Quick overview of Rails engines

Engines are small Rails applications that can be used to add functionalities to the application hosting them. The
class defining a Ruby on Rails application is Rails::Application which actually inherits a lot of its behavior from
Rails::Engine, the class defining an engine. We can say that a regular Rails application is simply an engine with
more features.

Section 60.1: Create a modular app

Getting started

First, let’s generate a new Ruby on Rails application:

rails new ModularTodo

The next step is to generate an engine!

cd ModularTodo && rails plugin new todo --mountable

We will also create an ‘engines’ folder to store the engines (even if we just have one!).

mkdir engines && mv todo ./engines

Engines, just like gems, come with a gemspec file. Let’s put some real values to avoid warnings.

 #ModularTodo/engines/todo/todo.gemspec
$:.push File.expand_path("../lib", __FILE__)

#Maintain your gem's version:
require "todo/version"

#Describe your gem and declare its dependencies:
Gem::Specification.new do |s|
 s.name = "todo"
 s.version = Todo::VERSION
 s.authors = ["Thibault Denizet"]
 s.email = ["bo@samurails.com"]
 s.homepage = "//samurails.com"
 s.summary = "Todo Module"
 s.description = "Todo Module for Modular Rails article"
 s.license = "MIT"

 #Moar stuff
 #...
end

Now we need to add the Todo engine to the parent application Gemfile.

#ModularTodo/Gemfile
#Other gems
gem 'todo', path: 'engines/todo'

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 190

Let’s run bundle install. You should see the following in the list of gems:

Using todo 0.0.1 from source at engines/todo

Great, our Todo engine is loaded correctly! Before we start coding, we have one last thing to do: mount the Todo
engine. We can do that in the routes.rb file in the parent app.

Rails.application.routes.draw do
 mount Todo::Engine => "/", as: 'todo'
end

We are mounting it at / but we could also make it accessible at /todo. Since we have only one module, / is fine.

Now you can fire up your server and check it in your browser. You should see the default Rails view because we
didn’t define any controllers/views yet. Let’s do that now!

Building the Todo list

We are going to scaffold a model named Task inside the Todo module but to correctly migrate the database from
the parent application, we need to add a small initializer to the engine.rb file.

#ModularTodo/engines/todo/lib/todo/engine.rb
module Todo
 class Engine < ::Rails::Engine
 isolate_namespace Todo

 initializer :append_migrations do |app|
 unless app.root.to_s.match(root.to_s)
 config.paths["db/migrate"].expanded.each do |p|
 app.config.paths["db/migrate"] << p
 end
 end
 end

 end
end

That’s it, now when we run migrations from the parent application, the migrations in the Todo engine will be loaded
too.

Let’s create the Task model. The scaffold command needs to be run from the engine folder.

cd engines/todo && rails g scaffold Task title:string content:text

Run the migrations from the parent folder:

rake db:migrate

Now, we just need to define the root route inside the Todo engine:

#ModularTodo/engines/todo/config/routes.rb
Todo::Engine.routes.draw do
 resources :tasks
 root 'tasks#index'
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 191

You can play with it, create tasks, delete them… Oh wait, the delete is not working! Why?! Well, it seems JQuery is
not loaded, so let’s add it to the application.js file inside the engine!

// ModularTodo/engines/todo/app/assets/javascripts/todo/application.js
//= require jquery
//= require jquery_ujs
//= require_tree .

Yay, now we can destroy tasks!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 192

Chapter 61: Single Table Inheritance
Single Table Inheritance (STI) is a design pattern which is based on the idea of saving the data of multiple models
which are all inheriting from the same Base model, into a single table in the database.

Section 61.1: Basic example
First we need a table to hold our data

class CreateUsers < ActiveRecord::Migration
 def change
 create_table :users do |t|
 t.string :name
 t.string :password
 t.string :type # <- This makes it an STI

 t.timestamps
 end
 end
end

Then lets create some models

class User < ActiveRecord::Base
 validates_presence_of :password
 # This is a parent class. All shared logic goes here
end

class Admin < User
 # Admins must have more secure passwords than regular users
 # We can add it here
 validates :custom_password_validation
end

class Guest < User
 # Lets say that we have a guest type login.
 # It has a static password that cannot be changed
 validates_inclusion_of :password, in: ['guest_password']
end

When you do a Guest.create(name: 'Bob') ActiveRecord will translate this to create an entry in the Users table
with type: 'Guest'.

When you retrieve the record bob = User.where(name: 'Bob').first the object returned will be an instance of
Guest, which can be forcibly treated as a User with bob.becomes(User)

becomes is most useful when dealing with shared partials or routes/controllers of the superclass instead of the
subclass.

Section 61.2: Custom inheritance column
By default STI model class name is stored in a column named type. But its name can be changed by overriding
inheritance_column value in a base class. E.g.:

class User < ActiveRecord::Base
 self.inheritance_column = :entity_type # can be string as well

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 193

end

class Admin < User; end

Migration in this case will look as follows:

class CreateUsers < ActiveRecord::Migration
 def change
 create_table :users do |t|
 t.string :name
 t.string :password
 t.string :entity_type

 t.timestamps
 end
 end
end

When you do Admin.create, this record will be saved in the users table with entity_type = "Admin"

Section 61.3: Rails model with type column and without STI
Having type column in a Rails model without invoking STI can be achieved by assigning :_type_disabled to
inheritance_column:

class User < ActiveRecord::Base
 self.inheritance_column = :_type_disabled
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 194

Chapter 62: ActiveRecord Transactions
ActiveRecord Transactions are protective blocks where sequence of active record queries are only permanent if
they can all succeed as one atomic action.

Section 62.1: Getting Started with Active Record Transactions
Active Record Transactions can be applied to Model classes as well as Model instances, the objects within the
transaction block need not all be instances of same class. This is because transactions are per-database connection,
not per-model. For example:

User.transaction do
 account.save!
 profile.save!
 print "All saves success, returning 1"
 return 1
end
rescue_from ActiveRecord::RecordInvalid do |exception|
 print "Exception thrown, transaction rolledback"
 render_error "failure", exception.record.errors.full_messages.to_sentence
end

Using save with a bang ensures that transaction will be automatically rolled back when the exception is thrown and
after the rollback, control goes to the rescue block for the exception. Make sure you rescue the exceptions
thrown from the save! in Transaction Block.

If you don't want to use save!, you can manually raise raise ActiveRecord::Rollback when the save fails. You
need not handle this exception. It will then rollback the transaction and take the control to the next statement after
transaction block.

 User.transaction do
 if account.save && profile.save
 print "All saves success, returning 1"
 return 1
 else
 raise ActiveRecord::Rollback
 end
 end
 print "Transaction Rolled Back"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 195

Chapter 63: Turbolinks
Turbolinks is a javascript library that makes navigating your web application faster. When you follow a link,
Turbolinks automatically fetches the page, swaps in its <body>, and merges its <head>, all without incurring the
cost of a full page load.

Section 63.1: Binding to turbolink's concept of a page load
With turbolinks, the traditional approach to using:

$(document).ready(function() {
 // awesome code
});

won't work. While using turbolinks, the $(document).ready() event will only fire once: on the initial page load.
From that point on, whenever a user clicks a link on your website, turbolinks will intercept the link click event and
make an ajax request to replace the <body> tag and to merge the <head> tags. The whole process triggers the
notion of a "visit" in turbolinks land. Therefore, instead of using the traditional document.ready() syntax above,
you'll have to bind to turbolink's visit event like so:

// pure js
document.addEventListener("turbolinks:load", function() {
 // awesome code
});

// jQuery
$(document).on('turbolinks:load', function() {
 // your code
});

Section 63.2: Disable turbolinks on specific links
It is very easy to disable turbolinks on specific links. According to the official turbolinks documentation:

Turbolinks can be disabled on a per-link basis by annotating a link or any of its ancestors with data-
turbolinks="false".

Examples:
// disables turbolinks for this one link
Disabled

// disables turbolinks for all links nested within the div tag
<div data-turbolinks="false">
 I'm disabled
 I'm also disabled
</div>

// re-enable specific link when ancestor has disabled turbolinks
<div data-turbolinks="false">
 I'm disabled
 I'm re-enabled
</div>

http://github.com/turbolinks/turbolinks
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 196

Section 63.3: Understanding Application Visits
Application visits are initiated by clicking a Turbolinks-enabled link, or programmatically by calling

Turbolinks.visit(location)

By default, the visit function uses the 'advance' action. More understandably, the default behavior for the visit
function is to advance to the page indicated by the "location" parameter. Whenever a page is visited, turbolinks
pushes a new entry onto the browser's history using history.pushState. The history is important because
turbolinks will try to use the history to load pages from cache whenever possible. This allows for extremely fast
page rendering for frequently visited pages.

However, if you want to visit a location without pushing any history onto the stack, you can use the 'replace' action
on the visit function like so:

// using links
Edit

// programmatically
Turbolinks.visit("/edit", { action: "replace" })

This will replace the top of the history stack with the new page so that the total number of items on the stack
remains unchanged.

There is also a "restore" action that aids in restoration vists, the visits that occur as a result of the user clicking the
forward button or back button on their browser. Turbolinks handles these types of events internally and
recommends that users don't manually tamper with the default behavior.

Section 63.4: Cancelling visits before they begin
Turbolinks provides an event listener that can be used to stop visits from occurring. Listen to the
turbolinks:before-visit event to be notified when a visit is about to commence.

In the event handler, you can use:

// pure javascript
event.data.url

or

// jQuery
$event.originalEvent.data.url

to retrieve the location of the visit. The visit can then be cancelled by calling:

event.preventDefault()

NOTE:

According to the official turbolinks docs:

Restoration visits cannot be canceled and do not fire turbolinks:before-visit.

https://github.com/turbolinks/turbolinks#restoration-visits
https://github.com/turbolinks/turbolinks#canceling-visits-before-they-start
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 197

Section 63.5: Persisting elements across page loads
Consider the following situation: Imagine that you are the developer of a social media website that allows users to
be friends with other users and that employs turbolinks to make page loading faster. In the top right of every page
on the site, there is a number indicating the total number of friends that a user currently has. Imagine you are using
your site and that you have 3 friends. Whenever a new friend is added, you have some javascript that runs which
updates the friend counter. Imagine that you just added a new friend and that your javascript ran properly and
updated the friend count in the top right of the page to now render 4. Now, imagine that you click the browser's
back button. When the page loads, you notice that the friend counter says 3 even though you have four friends.

This is a relatively common problem and one that turbolinks has provided a solution for. The reason the problem
occurs is because turbolinks automatically loads pages from the cache when a user clicks the back button. The
cached page won't always be updated with the database.

To solve this issue, imagine that you render the friend count inside a <div> tag with an id of "friend-count":

<div id="friend-count" data-turbolinks-permanent>3 friends</div>

By adding the data-turbolinks-permanent attribute, you're telling turbolinks to persist certain elements across
page loads. The official docs say:

Designate permanent elements by giving them an HTML id and annotating them with data-turbolinks-
permanent. Before each render, Turbolinks matches all permanent elements by id and transfers them
from the original page to the new page, preserving their data and event listeners.

https://github.com/turbolinks/turbolinks#persisting-elements-across-page-loads
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 198

Chapter 64: Friendly ID
FriendlyId is the "Swiss Army bulldozer" of slugging and permalink plugins for Active Record. It lets you create pretty
URLs and work with human-friendly strings as if they were numeric ids. With FriendlyId, it's easy to make your
application use URLs like:

http://example.com/states/washington

Section 64.1: Rails Quickstart
rails new my_app
cd my_app

Gemfile
gem 'friendly_id', '~> 5.1.0' # Note: You MUST use 5.0.0 or greater for Rails 4.0+
rails generate friendly_id
rails generate scaffold user name:string slug:string:uniq
rake db:migrate

edit app/models/user.rb
class User < ApplicationRecord
 extend FriendlyId
 friendly_id :name, use: :slugged
end

User.create! name: "Joe Schmoe"

Change User.find to User.friendly.find in your controller
User.friendly.find(params[:id])

rails server
GET http://localhost:3000/users/joe-schmoe

If you're adding FriendlyId to an existing app and need
to generate slugs for existing users, do this from the
console, runner, or add a Rake task:
User.find_each(&:save)

Finders are no longer overridden by default. If you want to do friendly finds, you must do
Model.friendly.find rather than Model.find. You can however restore FriendlyId 4-style finders by
using the :finders addon

friendly_id :foo, use: :slugged # you must do MyClass.friendly.find('bar')
#or...
friendly_id :foo, use: [:slugged, :finders] # you can now do MyClass.find('bar')

A new "candidates" functionality which makes it easy to set up a list of alternate slugs that can be used to uniquely
distinguish records, rather than appending a sequence. For example:

class Restaurant < ActiveRecord::Base
 extend FriendlyId
 friendly_id :slug_candidates, use: :slugged

 # Try building a slug based on the following fields in
 # increasing order of specificity.
 def slug_candidates

http://example.com/states/washington
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 199

 [
 :name,
 [:name, :city],
 [:name, :street, :city],
 [:name, :street_number, :street, :city]
]
 end
end

Set slug limit length using friendly_id gem?

def normalize_friendly_id(string)
 super[0..40]
end

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 200

Chapter 65: Securely storing
authentication keys
Many third-party APIs require a key, allowing them to prevent abuse. If they issue you a key, it's very important that
you not commit the key into a public repository, as this will allow others to steal your key.

Section 65.1: Storing authentication keys with Figaro
Add gem 'figaro' to your Gemfile and run bundle install. Then run bundle exec figaro install; this will
create config/application.yml and add it to your .gitignore file, preventing it from being added to version control.

You can store your keys in application.yml in this format:

SECRET_NAME: secret_value

where SECRET_NAME and secret_value are the name and value of your API key.

You also need to name these secrets in config/secrets.yml. You can have different secrets in each environment. The
file should look like this:

development:
 secret_name: <%= ENV["SECRET_NAME"] %>
test:
 secret_name: <%= ENV["SECRET_NAME"] %>
production:
 secret_name: <%= ENV["SECRET_NAME"] %>

How you use these keys varies, but say for example some_component in the development environment needs access
to secret_name. In config/environments/development.rb, you'd put:

Rails.application.configure do
 config.some_component.configuration_hash = {
 :secret => Rails.application.secrets.secret_name
 }
end

Finally, let's say you want to spin up a production environment on Heroku. This command will upload the values in
config/environments/production.rb to Heroku:

$ figaro heroku:set -e production

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 201

Chapter 66: Authenticate Api using Devise
Devise is authentication solution for Rails. Before going any further i would like to add quick note on API. So API
does not handle sessions (is stateless) which means one that provide response after you request, and then requires
no further attention, which means no previous or future state is required for the system to work hence whenever
we requesting to the server need to pass authentication details with all API and should tell Devise not to store
authentication details.

Section 66.1: Getting Started
So first we will create rails project and setup device

create a rails application

rails new devise_example

now add devise to gem list

you can find a file named 'Gemfile' at the root of rails project

Then run bundle install

Next, you need to run the generator:

rails generate devise:install

Now on console you can find few instructions just follow it.

Generate devise model

rails generate devise MODEL

Then run rake db:migrate

For more details go to: Devise Gem

Authentication Token

Authentication token is used to authenticate a user with a unique token, So Before we proceed with the logic first
we need to add auth_token field to a Devise model

Hence,

rails g migration add_authentication_token_to_users

class AddAuthenticationTokenToUsers < ActiveRecord::Migration
 def change
 add_column :users, :auth_token, :string, default: ""
 add_index :users, :auth_token, unique: true
 end
end

https://github.com/plataformatec/devise#getting-started
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 202

Then run rake db:migrate

Now we are all set to do authentication using auth_token

In app/controllers/application_controllers.rb

First this line to it

respond_to :html, :json

this will help rails application respond with both html and json

Then

protect_from_forgery with: :null

will change this :null as we are not dealing with sessions.

now we will add authentication method in application_controller

So, by default Devise uses email as unique field we can also use custom fields, for this case we will be
authenticating using user_email and auth_token.

 before_filter do
 user_email = params[:user_email].presence
 user = user_email && User.find_by_email(user_email)

 if user && Devise.secure_compare(user.authentication_token, params[:auth_token])
 sign_in user, store: false
 end
 end

Note: Above code is purely based on your logic i am just trying to explain the working example

On line 6 in the above code you can see that i have set store: false which will prevent from creating a session on
each requests hence we achieved stateless re

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 203

Chapter 67: Integrating React.js with Rails
Using Hyperloop
This topic covers integrating React.js with Rails using the Hyperloop gem

Other approaches not covered here are using the react-rails or react_on_rails gems.

Section 67.1: Adding a simple react component (written in
ruby) to your Rails app

Add the hyperloop gem to your rails (4.0 - 5.1) Gemfile1.
bundle install2.
Add the hyperloop manifest to the application.js file: // app/assets/javascripts/application.js ... //= hyperloop-3.
loader
Create your react components, and place them in the hyperloop/components directory #4.
app/hyperloop/components/hello_world.rb class HelloWorld < Hyperloop::Component after_mount do
every(1.second) { mutate.current_time(Time.now) } end render do "Hello World! The time is now:
#{state.current_time}" end end
Components act just like views. They are "mounted" using the render_component method in a controller: #5.
somewhere in a controller: ... def hello_world render_component # renders HelloWorld based on method
name end

Section 67.2: Callbacks
all react callbacks are supported using active-record-like syntax

class SomeCallBacks < Hyperloop::Component
 before_mount do
 # initialize stuff - replaces normal class initialize method
 end
 after_mount do
 # any access to actual generated dom node, or window behaviors goes here
 end
 before_unmount do
 # any cleanups (i.e. cancel intervals etc)
 end

 # you can also specify a method the usual way:
 before_mount :do_some_more_initialization
end

Section 67.3: Declaring component parameters (props)
class Hello < Hyperloop::Component
 # params (= react props) are declared using the param macro
 param :guest
 render do
 "Hello there #{params.guest}"
 end
end

to "mount" Hello with guest = "Matz" say
 Hello(guest: 'Matz')

http://ruby-hyperloop.io
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 204

params can be given a default value:
 param guest: 'friend' # or
 param :guest, default: 'friend'

Section 67.4: HTML Tags
HTML tags are built in and are UPCASE
class HTMLExample < Hyperloop::Component
 render do
 DIV do
 SPAN { "Hello There" }
 SPAN { "Welcome to the Machine!" }
 end
 end
end

Section 67.5: Event Handlers
Event handlers are attached using the 'on' method
class ClickMe < Hyperloop::Component
 render do
 DIV do
 SPAN { "Hello There" }
 A { "Click Me" }.on(:click) { alert('you did it!' }
 end
 end
end

Section 67.6: States
States are read using the 'state' method, and updated using 'mutate'
when states change they cause re-render of all dependent dom elements

class StateExample < Hyperloop::Component
 state count: 0 # by default states are initialized to nil
 render do
 DIV do
 SPAN { "Hello There" }
 A { "Click Me" }.on(:click) { mutate.count(state.count + 1) }
 DIV do
 "You have clicked me #{state.count} #{'time'.pluralize(state.count)}"
 end unless state.count == 0
 end
 end
end

Note that states can be shared between components using Hyperloop::Stores

http://ruby-hyperloop.io/start/stores/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 205

Chapter 68: Change a default Rails
application enviornment
This will discuss how to change the environment so when someone types rails s they boot in not development
but in the environment they want.

Section 68.1: Running on a local machine
Normally when rails environment is run by typing. This just runs the default environment which is usually
development

rails s

The specific environment can be selected by using the flag -e for example:

rails s -e test

Which will run the test environment.

The default environment can be changed in terminal by editing the ~/.bashrc file, and adding the following line:

export RAILS_ENV=production in your

Section 68.2: Running on a server
If running on a remote server that is using Passenger change apache.conf to to the environment you want to use.
For example this case you see RailsEnv production.

<VirtualHost *:80>
 ServerName application_name.rails.local
 DocumentRoot "/Users/rails/application_name/public"
 RailsEnv production ## This is the default
</VirtualHost>

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 206

Chapter 69: Rails -Engines
Parameters Purpose
--mountable option tells the generator that you want to create a "mountable" and namespace-isolated engine

--full option tells the generator that you want to create an engine, including a skeleton structure

Engines can be considered miniature applications that provide functionality to their host applications. A Rails
application is actually just a "supercharged" engine, with the Rails::Application class inheriting a lot of its behavior
from Rails::Engine.

Engines are the reusable rails applications/plugins. It works like a Gem. Famous engines are Device, Spree gems
which can be integrated with rails applications easily.

Section 69.1: Famous examples are
Generating simple blog engine

rails plugin new [engine name] --mountable

Famous engines examples are

Device (authentication gem for rails)

Spree (Ecommerce)

https://github.com/plataformatec/devise
https://github.com/spree/spree
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 207

Chapter 70: Adding an Amazon RDS to
your rails application
Steps to create an AWS RDS instance and configure your database.yml file by installing the required connectors.

Section 70.1: Consider we are connecting MYSQL RDS with
your rails application
Steps to create MYSQL database

Login to amazon account and select RDS service1.
Select Launch DB Instance from the instance tab2.
By defaul MYSQL Community Edition will be selected, hence click the SELECT button3.
Select the database purpose, say production and click next step4.
Provide the mysql version, storage size, DB Instance Identifier, Master Username and Password5.
and click next step
Enter Database Name and click Launch DB Instance6.
Please wait until all the instance gets created. Once the instance gets created you will find an Endpoint, copy7.
this entry point (which is referred as hostname)

Installing connectors

Add the MySQL database adapter to your project's gemfile,

gem 'mysql2'

Install your added gems,

bundle install

Some other database adapters are,

gem 'pg' for PostgreSQL
gem 'activerecord-oracle_enhanced-adapter' for Oracle
gem 'sql_server' for SQL Server

Configure your project's database.yml file Open your config/database.yml file

production:
 adapter: mysql2
 encoding: utf8
 database: <%= RDS_DB_NAME %> # Which you have entered you creating database
 username: <%= RDS_USERNAME %> # db master username
 password: <%= RDS_PASSWORD %> # db master password
 host: <%= RDS_HOSTNAME %> # db instance entrypoint
 port: <%= RDS_PORT %> # db post. For MYSQL 3306

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 208

Chapter 71: Payment feature in rails
This document pretend to introduce you, with a complete example, how you can implement different payment
methods with Ruby on Rails.

In the example, we will cover Stripe and Braintree two very well-known payment platforms.

Section 71.1: How to integrate with Stripe
Add Stripe gem to our Gemfile

gem 'stripe'

Add initializers/stripe.rb file. This file contains the necessary keys for connecting with your stripe account.

require 'require_all'

Rails.configuration.stripe = {
 :publishable_key => ENV['STRIPE_PUBLISHABLE_KEY'],
 :secret_key => ENV['STRIPE_SECRET_KEY']
}

Stripe.api_key = Rails.configuration.stripe[:secret_key]

How to create a new customer to Stripe
Stripe::Customer.create({email: email, source: payment_token})

This code creates a new customer on Stripe with given email address and source.

payment_token is the token given from the client-side that contains a payment method like a credit card or bank
account. More info: Stripe.js client-side

How to retrieve a plan from Stripe
Stripe::Plan.retrieve(stripe_plan_id)

This code retrieves a plan from Stripe by its id.

How to create a subscription

When we have a customer and a plan we can create a new subscription on Stripe.

Stripe::Subscription.create(customer: customer.id, plan: plan.id)

It will create a new subscription and will charge our User. It's important to know what really happens on Stripe
when we subscribe a user to a plan, you will find more info here: Stripe Subscription lifecycle.

How to charge a user with a single payment

Sometimes we want to charge our users just a single time, for do that we will do the next.

Stripe::Charge.create(amount: amount, customer: customer, currency: currency)

In that case, we are charging our user one time for given amount.

Common errors:

https://stripe.com/docs/stripe.js
https://stripe.com/docs/subscriptions/lifecycle
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 209

The amount must be sent in integer form, that means, 2000 will be 20 units of currency. Check this example

You cannot charge a user in two currencies. If the user was charged in EUR at any moment in the past you
cannot charge the user in USD.

You cannot charge user without source (payment method).

https://stripe.com/docs/charges
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 210

Chapter 72: Rails on docker
This tutorial will start with Docker installed and with a Rails app

Section 72.1: Docker and docker-compose
First of all, we will need to create our Dockerfile. A good example can be found on this blog by Nick Janetakis.

This code contains the script that will be executed on our docker machine at the moment of start.For this reason,
we are installing all the required libraries and ends with the start of Puma (RoR dev server)

Use the barebones version of Ruby 2.3.
FROM ruby:2.3.0-slim

Optionally set a maintainer name to let people know who made this image.
MAINTAINER Nick Janetakis <nick.janetakis@gmail.com>

Install dependencies:
- build-essential: To ensure certain gems can be compiled
- nodejs: Compile assets
- libpq-dev: Communicate with postgres through the postgres gem
RUN apt-get update && apt-get install -qq -y --no-install-recommends \
 build-essential nodejs libpq-dev git

Set an environment variable to store where the app is installed to inside
of the Docker image. The name matches the project name out of convention only.
ENV INSTALL_PATH /mh-backend
RUN mkdir -p $INSTALL_PATH

This sets the context of where commands will be running in and is documented
on Docker's website extensively.
WORKDIR $INSTALL_PATH

We want binstubs to be available so we can directly call sidekiq and
potentially other binaries as command overrides without depending on
bundle exec.
COPY Gemfile* $INSTALL_PATH/

ENV BUNDLE_GEMFILE $INSTALL_PATH/Gemfile
ENV BUNDLE_JOBS 2
ENV BUNDLE_PATH /gembox

RUN bundle install

Copy in the application code from your work station at the current directory
over to the working directory.
COPY . .

Ensure the static assets are exposed to a volume so that nginx can read
in these values later.
VOLUME ["$INSTALL_PATH/public"]

ENV RAILS_LOG_TO_STDOUT true

The default command that gets run will be to start the Puma server.
CMD bundle exec puma -C config/puma.rb

https://nickjanetakis.com/blog/dockerize-a-rails-5-postgres-redis-sidekiq-action-cable-app-with-docker-compose
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 211

Also, we will use docker-compose, for that, we will create docker-compose.yml. The explanation of this file will be
more a docker-compose tutorial than an integration with Rails and I will not cover here.

version: '2'

services:
 backend:
 links:
 - #whatever you need to link like db
 build: .
 command: ./scripts/start.sh
 ports:
 - '3000:3000'
 volumes:
 - .:/backend
 volumes_from:
 - gembox
 env_file:
 - .dev-docker.env
 stdin_open: true
 tty: true

Just with these two files you will have enough to run docker-compose up and wake up your docker

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 212

Appendix A: Reserved Words
You should be careful using these words for variable, model name, method name or etc.

Section A.1: Reserved Word List
ADDITIONAL_LOAD_PATHS
ARGF
ARGV
ActionController
ActionView
ActiveRecord
ArgumentError
Array
BasicSocket
Benchmark
Bignum
Binding
CGI
CGIMethods
CROSS_COMPILING
Class
ClassInheritableAttributes
Comparable
ConditionVariable
Config
Continuation
DRb
DRbIdConv
DRbObject
DRbUndumped
Data
Date
DateTime
Delegater
Delegator
Digest
Dir
ENV
EOFError
ERB
Enumerable
Errno
Exception
FALSE
FalseClass
Fcntl
File
FileList
FileTask

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 213

FileTest
FileUtils
Fixnum
Float
FloatDomainError
GC
Gem
GetoptLong
Hash
IO
IOError
IPSocket
IPsocket
IndexError
Inflector
Integer
Interrupt
Kernel
LN_SUPPORTED
LoadError
LocalJumpError
Logger
Marshal
MatchData
MatchingData
Math
Method
Module
Mutex
Mysql
MysqlError
MysqlField
MysqlRes
NIL
NameError
NilClass
NoMemoryError
NoMethodError
NoWrite
NotImplementedError
Numeric
OPT_TABLE
Object
ObjectSpace
Observable
Observer
PGError
PGconn
PGlarge
PGresult
PLATFORM

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 214

PStore
ParseDate
Precision
Proc
Process
Queue
RAKEVERSION
RELEASE_DATE
RUBY
RUBY_PLATFORM
RUBY_RELEASE_DATE
RUBY_VERSION
Rack
Rake
RakeApp
RakeFileUtils
Range
RangeError
Rational
Regexp
RegexpError
Request
RuntimeError
STDERR
STDIN
STDOUT
ScanError
ScriptError
SecurityError
Signal
SignalException
SimpleDelegater
SimpleDelegator
Singleton
SizedQueue
Socket
SocketError
StandardError
String
StringScanner
Struct
Symbol
SyntaxError
SystemCallError
SystemExit
SystemStackError
TCPServer
TCPSocket
TCPserver
TCPsocket
TOPLEVEL_BINDING

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 215

TRUE
Task
Text
Thread
ThreadError
ThreadGroup
Time
Transaction
TrueClass
TypeError
UDPSocket
UDPsocket
UNIXServer
UNIXSocket
UNIXserver
UNIXsocket
UnboundMethod
Url
VERSION
Verbose
YAML
ZeroDivisionError
@base_path
accept
Acces
Axi
action
attributes
application2
callback
category
connection
database
dispatcher
display1
drive
errors
format
host
key
layout
load
link
new
notify
open
public
quote
render
request
records

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 216

responses
save
scope
send
session
system
template
test
timeout
to_s
type
URI
visits
Observer

Database Field Names

created_at
created_on
updated_at
updated_on
deleted_at
(paranoia
gem)
lock_version
type
id
#{table_name}_count
position
parent_id
lft
rgt
quote_value

Ruby Reserved Words

alias
and
BEGIN
begin
break
case
class
def
defined?
do
else
elsif
END
end
ensure
false

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 217

for
if
module
next
nil
not
or
redo
rescue
retry
return
self
super
then
true
undef
unless
until
when
while
yield
_ FILE _
_ LINE _

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 218

Credits
Thank you greatly to all the people from Stack Overflow Documentation who helped provide this content,

more changes can be sent to web@petercv.com for new content to be published or updated

Abdullah Chapters 7, 12 and 13
abhas Chapter 40
Abhinay Chapter 10
Adam Lassek Chapters 2, 5, 6, 9, 12, 13, 38, 40 and 42
Ahsan Mahmood Chapter 25
Aigars Cibuļskis Chapter 5
Ajay Barot Chapters 1 and 13
Akshay Borade Chapter 57
Ali MasudianPour Chapter 16
Andy Gauge Chapter 2
AnoE Chapter 3
Antarr Byrd Chapter 10
Arslan Ali Chapter 54
ArtOfCode Chapter 20
Ashish Bista Chapter 41
Aswathy Chapter 1
Atul Khanduri Chapters 7 and 14
Avdept Chapter 13
Awais Shafqat Chapter 35
B Liu Chapter 37
B8vrede Chapter 33
Bijal Gajjar Chapter 3
br3nt Chapters 7 and 13
Brian Chapter 58
buren Chapter 5
cl3m Chapter 2
Cuisine Hacker Chapter 20
Cyril Duchon Chapters 2 and 17
D Chapter 3
Dénes Papp Chapter 32
danirod Chapter 4
Darpan Chhatravala Chapters 1 and 48
Darshan Patel Chapter 1
DawnPaladin Chapter 65
Deep Chapters 21, 27 and 47
Deepak Kabbur Chapter 69
Deepak Mahakale Chapters 1, 2, 5 and 12
dgilperez Chapters 10, 12 and 25
Dharam Gollapudi Chapters 2, 15 and 32
dnsh Chapter 13
dodo121 Chapter 12
Don Giovanni Chapter 43
elasticman Chapter 4
Emre Kurt Chapter 73
esthervillars Chapter 2
Fabio Ros Chapters 2, 13 and 46
fiedl Chapter 18

mailto:web@petercv.com
https://stackoverflow.com/users/4089357/
https://stackoverflow.com/users/1051778/
https://stackoverflow.com/users/2545197/
https://stackoverflow.com/users/1249/
https://stackoverflow.com/users/7262470/
https://stackoverflow.com/users/1425596/
https://stackoverflow.com/users/1425596/
https://stackoverflow.com/users/1425596/
https://stackoverflow.com/users/2681997/
https://stackoverflow.com/users/4723393/
https://stackoverflow.com/users/713916/
https://stackoverflow.com/users/5586783/
https://stackoverflow.com/users/5227053/
https://stackoverflow.com/users/504963/
https://stackoverflow.com/users/2202702/
https://stackoverflow.com/users/3160466/
https://stackoverflow.com/users/1166183/
https://stackoverflow.com/users/1718986/
https://stackoverflow.com/users/2945616/
https://stackoverflow.com/users/1411047/
https://stackoverflow.com/users/2779976/
https://stackoverflow.com/users/5733972/
https://stackoverflow.com/users/2263652/
https://stackoverflow.com/users/7017933/
https://stackoverflow.com/users/848668/
https://stackoverflow.com/users/4638378/
https://stackoverflow.com/users/955366/
https://stackoverflow.com/users/849105/
https://stackoverflow.com/users/5950320/
https://stackoverflow.com/users/2832282/
https://stackoverflow.com/users/2076787/
https://stackoverflow.com/users/667773/
https://stackoverflow.com/users/2033517/
https://stackoverflow.com/users/6318514/
https://stackoverflow.com/users/3131537/
https://stackoverflow.com/users/1805453/
https://stackoverflow.com/users/4207394/
https://stackoverflow.com/users/4247633/
https://stackoverflow.com/users/4758119/
https://stackoverflow.com/users/488195/
https://stackoverflow.com/users/115159/
https://stackoverflow.com/users/3079520/
https://stackoverflow.com/users/6266499/
https://stackoverflow.com/users/1020137/
https://stackoverflow.com/users/1794026/
https://stackoverflow.com/users/4841209/
https://stackoverflow.com/users/1886853/
https://stackoverflow.com/users/5244450/
https://stackoverflow.com/users/2066546/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 219

Fire Chapters 2 and 21
Flambino Chapter 7
fool Chapter 56
Francesco Lupo Renzi Chapters 2, 5, 13, 17 and 21
fybw id Chapter 29
Gaston Chapter 6
Geoffroy Chapter 1
glapworth Chapter 3
gwcodes Chapter 17
hadees Chapter 47
Hardik Kanjariya ツ Chapter 5
Hardik Upadhyay Chapters 6, 11, 12 and 15
hgsongra Chapters 7 and 34
Hizqeel Chapter 2
HParker Chapters 47, 50 and 51
hschin Chapters 5, 27, 36 and 37
HungryCoder Chapter 2
Ich Chapter 8
inye Chapter 6
jackerman09 Chapters 14, 15 and 21
jeffdill2 Chapters 5 and 13
Jeremy Green Chapter 15
jkdev Chapter 2
Joel Drapper Chapter 3
Jon Wood Chapter 2
Jorge Najera T Chapter 17
Kelseydh Chapter 32
Kevin Sylvestre Chapter 2
kfrz Chapter 1
Khanh Pham Chapters 11 and 20
Kieran Andrews Chapters 2, 10 and 22
Kimmo Hintikka Chapter 44
Kirti Thorat Chapters 1, 2 and 5
KULKING Chapters 2, 5 and 22
Lahiru Chapter 17
Lomefin Chapter 49
Lorenzo Baracchi Chapter 1
Luc Boissaye Chapter 43
Luka Kerr Chapters 1, 3, 4, 6, 7, 10 and 11
maartenvanvliet Chapters 3 and 5
Manish Agarwal Chapters 5 and 11
marcamillion Chapters 3 and 15
Mario Uher Chapter 2
Mark Chapter 63
Marko Kacanski Chapter 7
Mayur Shah Chapter 60
ma_il Chapters 6 and 27
michaelpri Chapters 1 and 30
Mihai Chapter 28
MikeAndr Chapter 13
Milind Chapters 2 and 45
Milo P Chapter 5
Mitch VanDuyn Chapter 67

https://stackoverflow.com/users/312907/
https://stackoverflow.com/users/167996/
https://stackoverflow.com/users/4172515/
https://stackoverflow.com/users/2454151/
https://stackoverflow.com/users/6924999/
https://stackoverflow.com/users/96737/
https://stackoverflow.com/users/610351/
https://stackoverflow.com/users/3588909/
https://stackoverflow.com/users/7671538/
https://stackoverflow.com/users/325068/
https://stackoverflow.com/users/4423221/
https://stackoverflow.com/users/4423221/
https://stackoverflow.com/users/6270554/
https://stackoverflow.com/users/3458314/
https://stackoverflow.com/users/5809075/
https://stackoverflow.com/users/1609040/
https://stackoverflow.com/users/2931685/
https://stackoverflow.com/users/383912/
https://stackoverflow.com/users/1271437/
https://stackoverflow.com/users/2144445/
https://stackoverflow.com/users/1499260/
https://stackoverflow.com/users/2266827/
https://stackoverflow.com/users/631187/
https://stackoverflow.com/users/3345375/
https://stackoverflow.com/users/6660632/
https://stackoverflow.com/users/25258/
https://stackoverflow.com/users/1060541/
https://stackoverflow.com/users/3448554/
https://stackoverflow.com/users/259900/
https://stackoverflow.com/users/705131/
https://stackoverflow.com/users/4344085/
https://stackoverflow.com/users/359736/
https://stackoverflow.com/users/2335820/
https://stackoverflow.com/users/1012097/
https://stackoverflow.com/users/1765499/
https://stackoverflow.com/users/1616697/
https://stackoverflow.com/users/652779/
https://stackoverflow.com/users/1244089/
https://stackoverflow.com/users/1607015/
https://stackoverflow.com/users/6523193/
https://stackoverflow.com/users/2087204/
https://stackoverflow.com/users/4432024/
https://stackoverflow.com/users/91970/
https://stackoverflow.com/users/326984/
https://stackoverflow.com/users/5781737/
https://stackoverflow.com/users/877579/
https://stackoverflow.com/users/5830036/
https://stackoverflow.com/users/1257094/
https://stackoverflow.com/users/4087357/
https://stackoverflow.com/users/4304188/
https://stackoverflow.com/users/2892022/
https://stackoverflow.com/users/1482055/
https://stackoverflow.com/users/2917523/
https://stackoverflow.com/users/859491/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 220

mlabarca Chapter 25
MMachinegun Chapters 4 and 27
mmichael Chapter 12
Muaaz Rafi Chapters 6 and 31
nifCody Chapter 1
Niyanta Chapter 11
nomatteus Chapters 5 and 15
nuclearpidgeon Chapter 2
olive_tree Chapter 1
Omar Ali Chapters 58 and 59
pablofullana Chapter 12
pastullo Chapter 2
powerup7 Chapters 3, 6, 13 and 15
ppascualv Chapters 71 and 72
Pragash Chapter 4
RADan Chapter 1
Rafael Costa Chapter 55
Rahul Singh Chapter 2
Raynor Kuang Chapters 2 and 11
rdnewman Chapter 13
Reboot Chapters 5 and 13
Reub Chapter 15
Richard Hamilton Chapters 1, 2, 5, 12, 14, 15, 22 and 39
rii Chapter 5
Robin Chapters 2, 5, 13 and 29
Rodrigo Argumedo Chapters 5 and 14
rogerdpack Chapter 2
rony36 Chapters 5 and 6
Rory O'Kane Chapters 2 and 5
Ruslan Chapter 61
Ryan Hilbert Chapter 2
Ryan K Chapters 2, 23 and 26
sa77 Chapters 1, 13 and 32
saadlulu Chapter 1
Sapna Jindal Chapters 11 and 62
Sathishkumar Jayaraj Chapters 1 and 70
Scott Matthewman Chapter 41
Sebastialonso Chapter 3
Sergey Khmelevskoy Chapter 19
Shivasubramanian A Chapter 53
Silviu Simeria Chapter 2
Simon Tsang Chapter 39
Simone Carletti Chapters 3 and 41
Sladey Chapter 8
Slava.K Chapter 61
sohail khalil Chapter 2
Sven Reuter Chapters 3, 7 and 21
tes Chapter 26
tessi Chapter 5
Thang Le Sy Chapter 64
theoretisch Chapter 1
thiago araujo Chapter 24
tirdadc Chapter 52

https://stackoverflow.com/users/2509777/
https://stackoverflow.com/users/2102463/
https://stackoverflow.com/users/461294/
https://stackoverflow.com/users/5224982/
https://stackoverflow.com/users/2672566/
https://stackoverflow.com/users/2694238/
https://stackoverflow.com/users/76710/
https://stackoverflow.com/users/3559682/
https://stackoverflow.com/users/636799/
https://stackoverflow.com/users/383819/
https://stackoverflow.com/users/2781602/
https://stackoverflow.com/users/1490947/
https://stackoverflow.com/users/4687343/
https://stackoverflow.com/users/2066608/
https://stackoverflow.com/users/1621998/
https://stackoverflow.com/users/2768322/
https://stackoverflow.com/users/7219974/
https://stackoverflow.com/users/1715409/
https://stackoverflow.com/users/4280391/
https://stackoverflow.com/users/3137549/
https://stackoverflow.com/users/2680864/
https://stackoverflow.com/users/6006050/
https://stackoverflow.com/users/4703663/
https://stackoverflow.com/users/664675/
https://stackoverflow.com/users/371530/
https://stackoverflow.com/users/4316935/
https://stackoverflow.com/users/32453/
https://stackoverflow.com/users/1682038/
https://stackoverflow.com/users/578288/
https://stackoverflow.com/users/6388521/
https://stackoverflow.com/users/2884225/
https://stackoverflow.com/users/733721/
https://stackoverflow.com/users/822256/
https://stackoverflow.com/users/409517/
https://stackoverflow.com/users/5805728/
https://stackoverflow.com/users/4745028/
https://stackoverflow.com/users/1326518/
https://stackoverflow.com/users/1296980/
https://stackoverflow.com/users/5365389/
https://stackoverflow.com/users/9195/
https://stackoverflow.com/users/2624835/
https://stackoverflow.com/users/6782482/
https://stackoverflow.com/users/123527/
https://stackoverflow.com/users/4778326/
https://stackoverflow.com/users/7362128/
https://stackoverflow.com/users/3619384/
https://stackoverflow.com/users/3739043/
https://stackoverflow.com/users/2813483/
https://stackoverflow.com/users/1881769/
https://stackoverflow.com/users/5452786/
https://stackoverflow.com/users/5859685/
https://stackoverflow.com/users/1766843/
https://stackoverflow.com/users/3102766/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Ruby® on Rails Notes for Professionals 221

titan Chapter 32
toobulkeh Chapter 61
Umar Khan Chapter 33
Undo Chapters 2 and 8
uzaif Chapters 1 and 5
Vishal Taj PM Chapters 13 and 66
Volodymyr Balytskyy Chapters 1, 4 and 11
Whitecat Chapter 68
William Romero Chapter 14
Xinyang Li Chapter 7
Yana Chapter 1
Zoran Chapter 2
孙悟空 Chapter 2

https://stackoverflow.com/users/1571115/
https://stackoverflow.com/users/1376201/
https://stackoverflow.com/users/2072436/
https://stackoverflow.com/users/1849664/
https://stackoverflow.com/users/3786332/
https://stackoverflow.com/users/3422357/
https://stackoverflow.com/users/2349546/
https://stackoverflow.com/users/659634/
https://stackoverflow.com/users/5424678/
https://stackoverflow.com/users/2226315/
https://stackoverflow.com/users/3034747/
https://stackoverflow.com/users/4613236/
https://stackoverflow.com/users/2936733/
https://stackoverflow.com/users/2936733/
https://stackoverflow.com/users/2936733/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

You may also like

https://goalkicker.com/AngularJSBook
https://goalkicker.com/RubyBook
https://goalkicker.com/CSSBook
https://goalkicker.com/HTML5Book
https://goalkicker.com/HTML5CanvasBook
https://goalkicker.com/GitBook
https://goalkicker.com/JavaBook
https://goalkicker.com/JavaScriptBook
https://goalkicker.com/jQueryBook

	Content list
	About
	Chapter 1: Getting started with Ruby on Rails
	Section 1.1: Creating a Ruby on Rails Application
	Section 1.2: Create a new Rails app with your choice of database and including the RSpec Testing Tool
	Section 1.3: Generating A Controller
	Section 1.4: Installing Rails
	Section 1.5: Create a new Rails app with a non-standard database adapter
	Section 1.6: Creating Rails APIs in JSON
	Section 1.7: Generate a Resource with Scaolds

	Chapter 2: Routing
	Section 2.1: Resource Routing (Basic)
	Section 2.2: Constraints
	Section 2.3: Scoping routes
	Section 2.4: Concerns
	Section 2.5: Root route
	Section 2.6: Split routes into multiple ﬁles
	Section 2.7: Additional RESTful actions
	Section 2.8: Member and Collection Routes
	Section 2.9: Mount another application
	Section 2.10: Nested Routes
	Section 2.11: Redirection
	Section 2.12: Redirects and Wildcard Routes
	Section 2.13: Scope available locales
	Section 2.14: URL params with a period

	Chapter 3: ActiveRecord
	Section 3.1: Creating a Model via generator
	Section 3.2: Introduction to Callbacks
	Section 3.3: Creating a Model manually
	Section 3.4: Manually Testing Your Models
	Section 3.5: Creating A Migration
	Section 3.6: Create a Join Table using Migrations
	Section 3.7: Using a model instance to update a row

	Chapter 4: Views
	Section 4.1: Structure
	Section 4.2: Partials
	Section 4.3: AssetTagHelper
	Section 4.4: Replace HTML code in Views
	Section 4.5: HAML - an alternative way to use in your views

	Chapter 5: ActiveRecord Migrations
	Section 5.1: Adding multiple columns to a table
	Section 5.2: Add a reference column to a table
	Section 5.3: Rollback migrations
	Section 5.4: Add a new column with an index
	Section 5.5: Run speciﬁc migration
	Section 5.6: Redo migrations
	Section 5.7: Add a new column to a table
	Section 5.8: Remove an existing column from a table
	Section 5.9: Add column with default value
	Section 5.10: Running migrations in dierent environments
	Section 5.11: Create a new table
	Section 5.12: Running migrations
	Section 5.13: Change an existing column’s type
	Section 5.14: Create a hstore column
	Section 5.15: Create a join table
	Section 5.16: Add a self reference
	Section 5.17: Create an array column
	Section 5.18: Add an unique column to a table
	Section 5.19: Checking migration status
	Section 5.20: Changing Tables
	Section 5.21: Adding a NOT NULL constraint to existing data
	Section 5.22: Forbid null values

	Chapter 6: Rails Best Practices
	Section 6.1: Fat Model, Skinny Controller
	Section 6.2: Domain Objects (No More Fat Models)
	Section 6.3: Beware of default_scope
	Section 6.4: Convention Over Conﬁguration
	Section 6.5: Don't Repeat Yourself (DRY)
	Section 6.6: You Ain’t Gonna Need it (YAGNI)

	Chapter 7: Naming Conventions
	Section 7.1: Controllers
	Section 7.2: Models
	Section 7.3: Filenames and autoloading
	Section 7.4: Views and Layouts
	Section 7.5: Models class from Controller name

	Chapter 8: ActionCable
	Section 8.1: User Authentication
	Section 8.2: [Basic] Server Side
	Section 8.3: [Basic] Client Side (Coeescript)

	Chapter 9: ActiveModel
	Section 9.1: Using ActiveModel::Validations

	Chapter 10: User Authentication in Rails
	Section 10.1: Authentication using Devise
	Section 10.2: Devise Controller Filters & Helpers
	Section 10.3: Omniauth
	Section 10.4: has_secure_password
	Section 10.5: has_secure_token

	Chapter 11: ActiveRecord Associations
	Section 11.1: Polymorphic association
	Section 11.2: Self-Referential Association
	Section 11.3: belongs_to
	Section 11.4: has_one
	Section 11.5: has_many
	Section 11.6: The has_many :through association
	Section 11.7: The has_one :through association
	Section 11.8: The has_and_belongs_to_many association

	Chapter 12: ActiveRecord Validations
	Section 12.1: Validating length of an attribute
	Section 12.2: Validates format of an attribute
	Section 12.3: Validating presence of an attribute
	Section 12.4: Custom validations
	Section 12.5: Validates inclusion of an attribute
	Section 12.6: Grouping validation
	Section 12.7: Validating numericality of an attribute
	Section 12.8: Validate uniqueness of an attribute
	Section 12.9: Skipping Validations
	Section 12.10: Conﬁrmation of attribute
	Section 12.11: Using :on option
	Section 12.12: Conditional validation

	Chapter 13: ActiveRecord Query Interface
	Section 13.1: .where
	Section 13.2: .where with an array
	Section 13.3: Scopes
	Section 13.4: Get ﬁrst and last record
	Section 13.5: Ordering
	Section 13.6: where.not
	Section 13.7: Includes
	Section 13.8: Joins
	Section 13.9: Limit and Oset
	Section 13.10: .ﬁnd_by
	Section 13.11: .delete_all
	Section 13.12: ActiveRecord case insensitive search
	Section 13.13: .group and .count
	Section 13.14: .distinct (or .uniq)

	Chapter 14: ActionMailer
	Section 14.1: Basic Mailer
	Section 14.2: Generating a new mailer
	Section 14.3: ActionMailer Interceptor
	Section 14.4: Adding Attachments
	Section 14.5: ActionMailer Callbacks
	Section 14.6: Generate a Scheduled Newsletter

	Chapter 15: Rails generate commands
	Section 15.1: Rails Generate Controller
	Section 15.2: Rails Generate Migration
	Section 15.3: Rails Generate Scaold
	Section 15.4: Rails Generate Model

	Chapter 16: Conﬁguration
	Section 16.1: Custom conﬁguration

	Chapter 17: I18n - Internationalization
	Section 17.1: I18n with arguments
	Section 17.2: Translating ActiveRecord model attributes
	Section 17.3: Get locale from HTTP request
	Section 17.4: Pluralization
	Section 17.5: Set locale through requests
	Section 17.6: Use I18n with HTML Tags and Symbols
	Section 17.7: Use I18n in views

	Chapter 18: Using GoogleMaps with Rails
	Section 18.1: Add the google maps javascript tag to the layout header
	Section 18.2: Geocode the model
	Section 18.3: Show addresses on a google map in the proﬁle view
	Section 18.4: Set the markers on the map with javascript
	Section 18.5: Initialize the map using a coee script class
	Section 18.6: Initialize the map markers using a coee script class
	Section 18.7: Auto-zoom a map using a coee script class
	Section 18.8: Exposing the model properties as json

	Chapter 19: File Uploads
	Section 19.1: Single ﬁle upload using Carrierwave
	Section 19.2: Nested model - multiple uploads

	Chapter 20: Caching
	Section 20.1: Russian Doll Caching
	Section 20.2: SQL Caching
	Section 20.3: Action caching
	Section 20.4: Fragment caching
	Section 20.5: Page caching
	Section 20.6: HTTP caching

	Chapter 21: ActionController
	Section 21.1: Basic REST Controller
	Section 21.2: Filters
	Section 21.3: Generating a controller
	Section 21.4: Rescuing ActiveRecord::RecordNotFound with redirect_to
	Section 21.5: Display error pages for exceptions
	Section 21.6: Output JSON instead of HTML
	Section 21.7: Controllers (Basic)
	Section 21.8: Parameters
	Section 21.9: Filtering parameters (Basic)
	Section 21.10: Redirecting
	Section 21.11: Using Views

	Chapter 22: Conﬁguration
	Section 22.1: Rails General Conﬁguration
	Section 22.2: Conﬁguring assets
	Section 22.3: Conﬁguring generators
	Section 22.4: Environments in Rails
	Section 22.5: Database Conﬁguration

	Chapter 23: Safe Constantize
	Section 23.1: Successful safe_constantize
	Section 23.2: Unsuccessful safe_constantize

	Chapter 24: Rails 5
	Section 24.1: How to install Ruby on Rails 5 on RVM
	Section 24.2: Creating a Ruby on Rails 5 API

	Chapter 25: Authorization with CanCan
	Section 25.1: Getting started with CanCan
	Section 25.2: Handling large number of abilities
	Section 25.3: Deﬁning abilities
	Section 25.4: Quickly test an ability

	Chapter 26: Mongoid
	Section 26.1: Fields
	Section 26.2: Installation
	Section 26.3: Creating a Model
	Section 26.4: Classic Associations
	Section 26.5: Embedded Associations
	Section 26.6: Database Calls

	Chapter 27: Gems
	Section 27.1: Gemﬁles
	Section 27.2: What is a gem?
	Section 27.3: Bundler
	Section 27.4: Gemsets

	Chapter 28: Change default timezone
	Section 28.1: Change Rails timezone AND have Active Record store times in this timezone
	Section 28.2: Change Rails timezone, but continue to have Active Record save in the database in UTC

	Chapter 29: Asset Pipeline
	Section 29.1: Manifest Files and Directives
	Section 29.2: Rake tasks
	Section 29.3: Basic Usage

	Chapter 30: Upgrading Rails
	Section 30.1: Upgrading from Rails 4.2 to Rails 5.0

	Chapter 31: ActiveRecord Locking
	Section 31.1: Optimistic Locking
	Section 31.2: Pessimistic Locking

	Chapter 32: Debugging
	Section 32.1: Debugging Rails Application
	Section 32.2: Debugging Ruby on Rails Quickly + Beginner advice
	Section 32.3: Debugging ruby-on-rails application with pry
	Section 32.4: Debugging in your IDE

	Chapter 33: Conﬁgure Angular with Rails
	Section 33.1: Angular with Rails 101

	Chapter 34: Rails logger
	Section 34.1: Rails.logger

	Chapter 35: Prawn PDF
	Section 35.1: Advanced Example
	Section 35.2: Basic Example

	Chapter 36: Rails API
	Section 36.1: Creating an API-only application

	Chapter 37: Deploying a Rails app on Heroku
	Section 37.1: Deploying your application
	Section 37.2: Managing Production and staging environments for a Heroku

	Chapter 38: ActiveSupport
	Section 38.1: Core Extensions: String Access
	Section 38.2: Core Extensions: String to Date/Time Conversion
	Section 38.3: Core Extensions: String Exclusion
	Section 38.4: Core Extensions: String Filters
	Section 38.5: Core Extensions: String Inﬂection

	Chapter 39: Form Helpers
	Section 39.1: Creating a search form
	Section 39.2: Dropdown
	Section 39.3: Helpers for form elements

	Chapter 40: ActiveRecord Transactions
	Section 40.1: Basic example
	Section 40.2: Dierent ActiveRecord classes in a single transaction
	Section 40.3: Multiple database connections
	Section 40.4: save and destroy are automatically wrapped in a transaction
	Section 40.5: Callbacks
	Section 40.6: Rolling back a transaction

	Chapter 41: RSpec and Ruby on Rails
	Section 41.1: Installing RSpec

	Chapter 42: Decorator pattern
	Section 42.1: Decorating a Model using Draper
	Section 42.2: Decorating a Model using SimpleDelegator

	Chapter 43: Elasticsearch
	Section 43.1: Searchkick
	Section 43.2: Installation and testing
	Section 43.3: Setting up tools for development
	Section 43.4: Introduction

	Chapter 44: React with Rails using react-rails gem
	Section 44.1: React installation for Rails using rails_react gem
	Section 44.2: Using react_rails within your application
	Section 44.3: Rendering & mounting

	Chapter 45: Rails Cookbook - Advanced rails recipes/learnings and coding techniques
	Section 45.1: Playing with Tables using rails console
	Section 45.2: Rails methods - returning boolean values
	Section 45.3: Handling the error - undeﬁned method `where' for #<Array:0x000000071923f8>

	Chapter 46: Multipurpose ActiveRecord columns
	Section 46.1: Saving an object
	Section 46.2: How To

	Chapter 47: Class Organization
	Section 47.1: Service Class
	Section 47.2: Model Class

	Chapter 48: Shallow Routing
	Section 48.1: Use of shallow

	Chapter 49: Model states: AASM
	Section 49.1: Basic state with AASM

	Chapter 50: Rails 5 API Authetication
	Section 50.1: Authentication with Rails authenticate_with_http_token

	Chapter 51: Testing Rails Applications
	Section 51.1: Unit Test
	Section 51.2: Request Test

	Chapter 52: Active Jobs
	Section 52.1: Introduction
	Section 52.2: Sample Job
	Section 52.3: Creating an Active Job via the generator

	Chapter 53: Rails frameworks over the years
	Section 53.1: How to ﬁnd what frameworks are available in the current version of Rails?
	Section 53.2: Rails versions in Rails 1.x
	Section 53.3: Rails frameworks in Rails 2.x
	Section 53.4: Rails frameworks in Rails 3.x

	Chapter 54: Nested form in Ruby on Rails
	Section 54.1: How to setup a nested form in Ruby on Rails

	Chapter 55: Factory Girl
	Section 55.1: Deﬁning Factories

	Chapter 56: Import whole CSV ﬁles from speciﬁc folder
	Section 56.1: Uploads CSV from console command

	Chapter 57: Tools for Ruby on Rails code optimization and cleanup
	Section 57.1: If you want to keep your code maintainable, secure and optimized, look at some gems for code optimization and cleanup :

	Chapter 58: ActiveJob
	Section 58.1: Create the Job
	Section 58.2: Enqueue the Job

	Chapter 59: Active Model Serializers
	Section 59.1: Using a serializer

	Chapter 60: Rails Engine - Modular Rails
	Section 60.1: Create a modular app

	Chapter 61: Single Table Inheritance
	Section 61.1: Basic example
	Section 61.2: Custom inheritance column
	Section 61.3: Rails model with type column and without STI

	Chapter 62: ActiveRecord Transactions
	Section 62.1: Getting Started with Active Record Transactions

	Chapter 63: Turbolinks
	Section 63.1: Binding to turbolink's concept of a page load
	Section 63.2: Disable turbolinks on speciﬁc links
	Section 63.3: Understanding Application Visits
	Section 63.4: Cancelling visits before they begin
	Section 63.5: Persisting elements across page loads

	Chapter 64: Friendly ID
	Section 64.1: Rails Quickstart

	Chapter 65: Securely storing authentication keys
	Section 65.1: Storing authentication keys with Figaro

	Chapter 66: Authenticate Api using Devise
	Section 66.1: Getting Started

	Chapter 67: Integrating React.js with Rails Using Hyperloop
	Section 67.1: Adding a simple react component (written in ruby) to your Rails app
	Section 67.2: Callbacks
	Section 67.3: Declaring component parameters (props)
	Section 67.4: HTML Tags
	Section 67.5: Event Handlers
	Section 67.6: States

	Chapter 68: Change a default Rails application enviornment
	Section 68.1: Running on a local machine
	Section 68.2: Running on a server

	Chapter 69: Rails -Engines
	Section 69.1: Famous examples are

	Chapter 70: Adding an Amazon RDS to your rails application
	Section 70.1: Consider we are connecting MYSQL RDS with your rails application

	Chapter 71: Payment feature in rails
	Section 71.1: How to integrate with Stripe

	Chapter 72: Rails on docker
	Section 72.1: Docker and docker-compose

	Appendix A: Reserved Words
	Section A.1: Reserved Word List

	Credits
	You may also like

