
Haskell
Notes for ProfessionalsHaskell

Notes for Professionals

GoalKicker.com
Free Programming Books

Disclaimer
This is an unocial free book created for educational purposes and is

not aliated with ocial Haskell group(s) or company(s).
All trademarks and registered trademarks are

the property of their respective owners

200+ pages
of professional hints and tricks

https://goalkicker.com
https://goalkicker.com

Contents
About 1 ...

Chapter 1: Getting started with Haskell Language 2 ...
Section 1.1: Getting started 2 ..
Section 1.2: Hello, World! 4 ...
Section 1.3: Factorial 6 ..
Section 1.4: Fibonacci, Using Lazy Evaluation 6 ..
Section 1.5: Primes 7 ...
Section 1.6: Declaring Values 8 ..

Chapter 2: Overloaded Literals 10 ...
Section 2.1: Strings 10 ...
Section 2.2: Floating Numeral 10 ..
Section 2.3: Integer Numeral 11 ..
Section 2.4: List Literals 11 ..

Chapter 3: Foldable 13 ...
Section 3.1: Definition of Foldable 13 ..
Section 3.2: An instance of Foldable for a binary tree 13 ..
Section 3.3: Counting the elements of a Foldable structure 14 ...
Section 3.4: Folding a structure in reverse 14 ...
Section 3.5: Flattening a Foldable structure into a list 15 ..
Section 3.6: Performing a side-eect for each element of a Foldable structure 15 ...
Section 3.7: Flattening a Foldable structure into a Monoid 16 ..
Section 3.8: Checking if a Foldable structure is empty 16 ...

Chapter 4: Traversable 18 ...
Section 4.1: Definition of Traversable 18 ..
Section 4.2: Traversing a structure in reverse 18 ...
Section 4.3: An instance of Traversable for a binary tree 19 ..
Section 4.4: Traversable structures as shapes with contents 20 ..
Section 4.5: Instantiating Functor and Foldable for a Traversable structure 20 ...
Section 4.6: Transforming a Traversable structure with the aid of an accumulating parameter 21
Section 4.7: Transposing a list of lists 22 ...

Chapter 5: Lens 24 ..
Section 5.1: Lenses for records 24 ...
Section 5.2: Manipulating tuples with Lens 24 ...
Section 5.3: Lens and Prism 25 ..
Section 5.4: Stateful Lenses 25 ..
Section 5.5: Lenses compose 26 ...
Section 5.6: Writing a lens without Template Haskell 26 ...
Section 5.7: Fields with makeFields 27 ...
Section 5.8: Classy Lenses 29 ..
Section 5.9: Traversals 29 ..

Chapter 6: QuickCheck 30 ...
Section 6.1: Declaring a property 30 ...
Section 6.2: Randomly generating data for custom types 30 ...
Section 6.3: Using implication (==>) to check properties with preconditions 30 ..
Section 6.4: Checking a single property 30 ...
Section 6.5: Checking all the properties in a file 31 ..
Section 6.6: Limiting the size of test data 31 ...

Chapter 7: Common GHC Language Extensions 33 ...
Section 7.1: RankNTypes 33 ...
Section 7.2: OverloadedStrings 33 ..
Section 7.3: BinaryLiterals 34 ..
Section 7.4: ExistentialQuantification 34 ..
Section 7.5: LambdaCase 35 ...
Section 7.6: FunctionalDependencies 36 ..
Section 7.7: FlexibleInstances 36 ...
Section 7.8: GADTs 37 ..
Section 7.9: TupleSections 37 ..
Section 7.10: OverloadedLists 38 ...
Section 7.11: MultiParamTypeClasses 38 ..
Section 7.12: UnicodeSyntax 39 ...
Section 7.13: PatternSynonyms 39 ..
Section 7.14: ScopedTypeVariables 40 ...
Section 7.15: RecordWildCards 41 ...

Chapter 8: Free Monads 42 ..
Section 8.1: Free monads split monadic computations into data structures and interpreters 42
Section 8.2: The Freer monad 43 ..
Section 8.3: How do foldFree and iterM work? 44 ..
Section 8.4: Free Monads are like fixed points 45 ...

Chapter 9: Type Classes 46 ..
Section 9.1: Eq 46 ..
Section 9.2: Monoid 46 ...
Section 9.3: Ord 47 ...
Section 9.4: Num 47 ..
Section 9.5: Maybe and the Functor Class 49 ...
Section 9.6: Type class inheritance: Ord type class 49 ...

Chapter 10: IO 51 ...
Section 10.1: Getting the 'a' "out of" 'IO a' 51 ..
Section 10.2: IO defines your program's `main` action 51 ..
Section 10.3: Checking for end-of-file conditions 52 ...
Section 10.4: Reading all contents of standard input into a string 52 ..
Section 10.5: Role and Purpose of IO 53 ..
Section 10.6: Writing to stdout 55 ..
Section 10.7: Reading words from an entire file 56 ...
Section 10.8: Reading a line from standard input 56 ..
Section 10.9: Reading from `stdin` 57 ..
Section 10.10: Parsing and constructing an object from standard input 57 ...
Section 10.11: Reading from file handles 58 ...

Chapter 11: Record Syntax 59 ...
Section 11.1: Basic Syntax 59 ..
Section 11.2: Defining a data type with field labels 60 ..
Section 11.3: RecordWildCards 60 ...
Section 11.4: Copying Records while Changing Field Values 61 ...
Section 11.5: Records with newtype 61 ...

Chapter 12: Partial Application 63 ..
Section 12.1: Sections 63 ...
Section 12.2: Partially Applied Adding Function 63 ...
Section 12.3: Returning a Partially Applied Function 64 ...

Chapter 13: Monoid 65 ...
Section 13.1: An instance of Monoid for lists 65 ..
Section 13.2: Collapsing a list of Monoids into a single value 65 ...
Section 13.3: Numeric Monoids 65 ...
Section 13.4: An instance of Monoid for () 66 ..

Chapter 14: Category Theory 67 ..
Section 14.1: Category theory as a system for organizing abstraction 67 ...
Section 14.2: Haskell types as a category 67 ..
Section 14.3: Definition of a Category 69 ...
Section 14.4: Coproduct of types in Hask 70 ...
Section 14.5: Product of types in Hask 71 ..
Section 14.6: Haskell Applicative in terms of Category Theory 72 ..

Chapter 15: Lists 73 ..
Section 15.1: List basics 73 ..
Section 15.2: Processing lists 73 ..
Section 15.3: Ranges 74 ..
Section 15.4: List Literals 75 ...
Section 15.5: List Concatenation 75 ..
Section 15.6: Accessing elements in lists 75 ...
Section 15.7: Basic Functions on Lists 75 ..
Section 15.8: Transforming with `map` 76 ..
Section 15.9: Filtering with `filter` 76 ..
Section 15.10: foldr 77 ...
Section 15.11: Zipping and Unzipping Lists 77 ...
Section 15.12: foldl 78 ..

Chapter 16: Sorting Algorithms 79 ..
Section 16.1: Insertion Sort 79 ...
Section 16.2: Permutation Sort 79 ...
Section 16.3: Merge Sort 79 ..
Section 16.4: Quicksort 80 ..
Section 16.5: Bubble sort 80 ...
Section 16.6: Selection sort 80 ...

Chapter 17: Type Families 81 ..
Section 17.1: Datatype Families 81 ..
Section 17.2: Type Synonym Families 81 ...
Section 17.3: Injectivity 83 ...

Chapter 18: Monads 84 ...
Section 18.1: Definition of Monad 84 ...
Section 18.2: No general way to extract value from a monadic computation 84 ...
Section 18.3: Monad as a Subclass of Applicative 85 ..
Section 18.4: The Maybe monad 85 ..
Section 18.5: IO monad 87 ...
Section 18.6: List Monad 88 ..
Section 18.7: do-notation 88 ..

Chapter 19: Stack 90 ..
Section 19.1: Profiling with Stack 90 ...
Section 19.2: Structure 90 ...
Section 19.3: Build and Run a Stack Project 90 ..
Section 19.4: Viewing dependencies 90 ..

Section 19.5: Stack install 91 ..
Section 19.6: Installing Stack 91 ...
Section 19.7: Creating a simple project 91 ...
Section 19.8: Stackage Packages and changing the LTS (resolver) version 91 ..

Chapter 20: Generalized Algebraic Data Types 93 ...
Section 20.1: Basic Usage 93 ...

Chapter 21: Recursion Schemes 94 ..
Section 21.1: Fixed points 94 ...
Section 21.2: Primitive recursion 94 ...
Section 21.3: Primitive corecursion 95 ...
Section 21.4: Folding up a structure one layer at a time 95 ...
Section 21.5: Unfolding a structure one layer at a time 95 ..
Section 21.6: Unfolding and then folding, fused 95 ...

Chapter 22: Data.Text 97 ..
Section 22.1: Text Literals 97 ..
Section 22.2: Checking if a Text is a substring of another Text 97 ...
Section 22.3: Stripping whitespace 97 ..
Section 22.4: Indexing Text 98 ...
Section 22.5: Splitting Text Values 98 ...
Section 22.6: Encoding and Decoding Text 99 ..

Chapter 23: Using GHCi 100 ..
Section 23.1: Breakpoints with GHCi 100 ..
Section 23.2: Quitting GHCi 100 ..
Section 23.3: Reloading a already loaded file 101 ..
Section 23.4: Starting GHCi 101 ..
Section 23.5: Changing the GHCi default prompt 101 ..
Section 23.6: The GHCi configuration file 101 ...
Section 23.7: Loading a file 102 ..
Section 23.8: Multi-line statements 102 ..

Chapter 24: Strictness 103 ...
Section 24.1: Bang Patterns 103 ..
Section 24.2: Lazy patterns 103 ..
Section 24.3: Normal forms 104 ..
Section 24.4: Strict fields 105 ...

Chapter 25: Syntax in Functions 106 ...
Section 25.1: Pattern Matching 106 ...
Section 25.2: Using where and guards 106 ...
Section 25.3: Guards 107 ...

Chapter 26: Functor 108 ...
Section 26.1: Class Definition of Functor and Laws 108 ...
Section 26.2: Replacing all elements of a Functor with a single value 108 ..
Section 26.3: Common instances of Functor 108 ..
Section 26.4: Deriving Functor 110 ...
Section 26.5: Polynomial functors 111 ...
Section 26.6: Functors in Category Theory 112 ..

Chapter 27: Testing with Tasty 114 ...
Section 27.1: SmallCheck, QuickCheck and HUnit 114 ..

Chapter 28: Creating Custom Data Types 115 ..
Section 28.1: Creating a data type with value constructor parameters 115 ..

Section 28.2: Creating a data type with type parameters 115 ...
Section 28.3: Creating a simple data type 115 ...
Section 28.4: Custom data type with record parameters 116 ...

Chapter 29: Reactive-banana 117 ..
Section 29.1: Injecting external events into the library 117 ..
Section 29.2: Event type 117 ...
Section 29.3: Actuating EventNetworks 117 ..
Section 29.4: Behavior type 118 ...

Chapter 30: Optimization 119 ...
Section 30.1: Compiling your Program for Profiling 119 ..
Section 30.2: Cost Centers 119 ..

Chapter 31: Concurrency 121 ...
Section 31.1: Spawning Threads with `forkIO` 121 ..
Section 31.2: Communicating between Threads with `MVar` 121 ..
Section 31.3: Atomic Blocks with Software Transactional Memory 122 ...

Chapter 32: Function composition 124 ...
Section 32.1: Right-to-left composition 124 ...
Section 32.2: Composition with binary function 124 ...
Section 32.3: Left-to-right composition 124 ...

Chapter 33: Databases 125 ..
Section 33.1: Postgres 125 ..

Chapter 34: Data.Aeson - JSON in Haskell 126 ...
Section 34.1: Smart Encoding and Decoding using Generics 126 ..
Section 34.2: A quick way to generate a Data.Aeson.Value 126 ...
Section 34.3: Optional Fields 127 ..

Chapter 35: Higher-order functions 128 ..
Section 35.1: Basics of Higher Order Functions 128 ..
Section 35.2: Lambda Expressions 128 ..
Section 35.3: Currying 129 ...

Chapter 36: Containers - Data.Map 130 ..
Section 36.1: Importing the Module 130 ..
Section 36.2: Monoid instance 130 ...
Section 36.3: Constructing 130 ..
Section 36.4: Checking If Empty 130 ..
Section 36.5: Finding Values 130 ...
Section 36.6: Inserting Elements 131 ..
Section 36.7: Deleting Elements 131 ...

Chapter 37: Fixity declarations 132 ..
Section 37.1: Associativity 132 ...
Section 37.2: Binding precedence 132 ...
Section 37.3: Example declarations 133 ...

Chapter 38: Web Development 134 ...
Section 38.1: Servant 134 ...
Section 38.2: Yesod 135 ...

Chapter 39: Vectors 136 ...
Section 39.1: The Data.Vector Module 136 ...
Section 39.2: Filtering a Vector 136 ..
Section 39.3: Mapping (`map`) and Reducing (`fold`) a Vector 136 ..
Section 39.4: Working on Multiple Vectors 136 ...

Chapter 40: Cabal 137 ..
Section 40.1: Working with sandboxes 137 ..
Section 40.2: Install packages 137 ...

Chapter 41: Type algebra 138 ..
Section 41.1: Addition and multiplication 138 ...
Section 41.2: Functions 139 ..
Section 41.3: Natural numbers in type algebra 139 ..
Section 41.4: Recursive types 140 ...
Section 41.5: Derivatives 141 ...

Chapter 42: Arrows 142 ...
Section 42.1: Function compositions with multiple channels 142 ..

Chapter 43: Typed holes 143 ..
Section 43.1: Syntax of typed holes 143 ...
Section 43.2: Semantics of typed holes 143 ..
Section 43.3: Using typed holes to define a class instance 143 ..

Chapter 44: Rewrite rules (GHC) 146 ..
Section 44.1: Using rewrite rules on overloaded functions 146 ...

Chapter 45: Date and Time 147 ..
Section 45.1: Finding Today's Date 147 ..
Section 45.2: Adding, Subtracting and Comparing Days 147 ..

Chapter 46: List Comprehensions 148 ..
Section 46.1: Basic List Comprehensions 148 ..
Section 46.2: Do Notation 148 ...
Section 46.3: Patterns in Generator Expressions 148 ...
Section 46.4: Guards 149 ...
Section 46.5: Parallel Comprehensions 149 ...
Section 46.6: Local Bindings 149 ...
Section 46.7: Nested Generators 150 ...

Chapter 47: Streaming IO 151 ..
Section 47.1: Streaming IO 151 ..

Chapter 48: Google Protocol Buers 152 ..
Section 48.1: Creating, building and using a simple .proto file 152 ...

Chapter 49: Template Haskell & QuasiQuotes 154 ...
Section 49.1: Syntax of Template Haskell and Quasiquotes 154 ...
Section 49.2: The Q type 155 ..
Section 49.3: An n-arity curry 156 ..

Chapter 50: Phantom types 158 ..
Section 50.1: Use Case for Phantom Types: Currencies 158 ..

Chapter 51: Modules 159 ..
Section 51.1: Defining Your Own Module 159 ...
Section 51.2: Exporting Constructors 159 ...
Section 51.3: Importing Specific Members of a Module 159 ...
Section 51.4: Hiding Imports 160 ...
Section 51.5: Qualifying Imports 160 ..
Section 51.6: Hierarchical module names 160 ...

Chapter 52: Tuples (Pairs, Triples, ...) 162 ...
Section 52.1: Extract tuple components 162 ..
Section 52.2: Strictness of matching a tuple 162 ..

Section 52.3: Construct tuple values 162 ...
Section 52.4: Write tuple types 163 ..
Section 52.5: Pattern Match on Tuples 163 ...
Section 52.6: Apply a binary function to a tuple (uncurrying) 164 ...
Section 52.7: Apply a tuple function to two arguments (currying) 164 ..
Section 52.8: Swap pair components 164 ..

Chapter 53: Graphics with Gloss 165 ...
Section 53.1: Installing Gloss 165 ...
Section 53.2: Getting something on the screen 165 ...

Chapter 54: State Monad 167 ...
Section 54.1: Numbering the nodes of a tree with a counter 167 ..

Chapter 55: Pipes 169 ..
Section 55.1: Producers 169 ...
Section 55.2: Connecting Pipes 169 ..
Section 55.3: Pipes 169 ...
Section 55.4: Running Pipes with runEect 169 ..
Section 55.5: Consumers 170 ..
Section 55.6: The Proxy monad transformer 170 ...
Section 55.7: Combining Pipes and Network communication 170 ..

Chapter 56: Infix operators 173 ...
Section 56.1: Prelude 173 ...
Section 56.2: Finding information about infix operators 174 ...
Section 56.3: Custom operators 174 ...

Chapter 57: Parallelism 176 ...
Section 57.1: The Eval Monad 176 ...
Section 57.2: rpar 176 ..
Section 57.3: rseq 177 ..

Chapter 58: Parsing HTML with taggy-lens and lens 178 ...
Section 58.1: Filtering elements from the tree 178 ..
Section 58.2: Extract the text contents from a div with a particular id 178 ...

Chapter 59: Foreign Function Interface 180 ..
Section 59.1: Calling C from Haskell 180 ..
Section 59.2: Passing Haskell functions as callbacks to C code 180 ..

Chapter 60: Gtk3 182 ...
Section 60.1: Hello World in Gtk 182 ...

Chapter 61: Monad Transformers 183 ..
Section 61.1: A monadic counter 183 ...

Chapter 62: Bifunctor 186 ...
Section 62.1: Definition of Bifunctor 186 ...
Section 62.2: Common instances of Bifunctor 186 ...
Section 62.3: first and second 186 ..

Chapter 63: Proxies 188 ..
Section 63.1: Using Proxy 188 ..
Section 63.2: The "polymorphic proxy" idiom 188 ..
Section 63.3: Proxy is like () 188 ..

Chapter 64: Applicative Functor 190 ...
Section 64.1: Alternative definition 190 ...
Section 64.2: Common instances of Applicative 190 ..

Chapter 65: Common monads as free monads 193 ..
Section 65.1: Free Empty ~~ Identity 193 ..
Section 65.2: Free Identity ~~ (Nat,) ~~ Writer Nat 193 ...
Section 65.3: Free Maybe ~~ MaybeT (Writer Nat) 193 ..
Section 65.4: Free (Writer w) ~~ Writer [w] 194 ...
Section 65.5: Free (Const c) ~~ Either c 194 ...
Section 65.6: Free (Reader x) ~~ Reader (Stream x) 195 ...

Chapter 66: Common functors as the base of cofree comonads 196 ...
Section 66.1: Cofree Empty ~~ Empty 196 ..
Section 66.2: Cofree (Const c) ~~ Writer c 196 ..
Section 66.3: Cofree Identity ~~ Stream 196 ..
Section 66.4: Cofree Maybe ~~ NonEmpty 196 ...
Section 66.5: Cofree (Writer w) ~~ WriterT w Stream 197 ..
Section 66.6: Cofree (Either e) ~~ NonEmptyT (Writer e) 197 ..
Section 66.7: Cofree (Reader x) ~~ Moore x 198 ...

Chapter 67: Arithmetic 199 ...
Section 67.1: Basic examples 201 ..
Section 67.2: `Could not deduce (Fractional Int) ...` 201 ..
Section 67.3: Function examples 201 ..

Chapter 68: Role 203 ...
Section 68.1: Nominal Role 203 ...
Section 68.2: Representational Role 203 ...
Section 68.3: Phantom Role 203 ...

Chapter 69: Arbitrary-rank polymorphism with RankNTypes 204 ..
Section 69.1: RankNTypes 204 ..

Chapter 70: GHCJS 205 ..
Section 70.1: Running "Hello World!" with Node.js 205 ..

Chapter 71: XML 206 ...
Section 71.1: Encoding a record using the `xml` library 206 ..

Chapter 72: Reader / ReaderT 207 ...
Section 72.1: Simple demonstration 207 ...

Chapter 73: Function call syntax 208 ..
Section 73.1: Partial application - Part 1 208 ..
Section 73.2: Partial application - Part 2 208 ...
Section 73.3: Parentheses in a basic function call 208 ...
Section 73.4: Parentheses in embedded function calls 209 ...

Chapter 74: Logging 210 ...
Section 74.1: Logging with hslogger 210 ..

Chapter 75: Attoparsec 211 ...
Section 75.1: Combinators 211 ..
Section 75.2: Bitmap - Parsing Binary Data 211 ...

Chapter 76: zipWithM 213 ..
Section 76.1: Calculatings sales prices 213 ..

Chapter 77: Profunctor 214 ..
Section 77.1: (->) Profunctor 214 ...

Chapter 78: Type Application 215 ...
Section 78.1: Avoiding type annotations 215 ...
Section 78.2: Type applications in other languages 215 ..

Section 78.3: Order of parameters 216 ..
Section 78.4: Interaction with ambiguous types 216 ..

Credits 218 ..

You may also like 220 ..

GoalKicker.com – Haskell Notes for Professionals 1

About

Please feel free to share this PDF with anyone for free,
latest version of this book can be downloaded from:

https://goalkicker.com/HaskellBook

This Haskell Notes for Professionals book is compiled from Stack Overflow
Documentation, the content is written by the beautiful people at Stack Overflow.
Text content is released under Creative Commons BY-SA, see credits at the end

of this book whom contributed to the various chapters. Images may be copyright
of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not
affiliated with official Haskell group(s) or company(s) nor Stack Overflow. All
trademarks and registered trademarks are the property of their respective

company owners

The information presented in this book is not guaranteed to be correct nor
accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

https://goalkicker.com/HaskellBook
https://archive.org/details/documentation-dump.7z
https://archive.org/details/documentation-dump.7z
mailto:web@petercv.com
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 2

Chapter 1: Getting started with Haskell
Language

Version Release Date
Haskell 2010 2012-07-10

Haskell 98 2002-12-01

Section 1.1: Getting started
Online REPL

The easiest way to get started writing Haskell is probably by going to the Haskell website or Try Haskell and use the
online REPL (read-eval-print-loop) on the home page. The online REPL supports most basic functionality and even
some IO. There is also a basic tutorial available which can be started by typing the command help. An ideal tool to
start learning the basics of Haskell and try out some stuff.

GHC(i)

For programmers that are ready to engage a little bit more, there is GHCi, an interactive environment that comes
with the Glorious/Glasgow Haskell Compiler. The GHC can be installed separately, but that is only a compiler. In order
to be able to install new libraries, tools like Cabal and Stack must be installed as well. If you are running a Unix-like
operating system, the easiest installation is to install Stack using:

curl -sSL https://get.haskellstack.org/ | sh

This installs GHC isolated from the rest of your system, so it is easy to remove. All commands must be preceded by
stack though. Another simple approach is to install a Haskell Platform. The platform exists in two flavours:

The minimal distribution contains only GHC (to compile) and Cabal/Stack (to install and build packages)1.
The full distribution additionally contains tools for project development, profiling and coverage analysis. Also2.
an additional set of widely-used packages is included.

These platforms can be installed by downloading an installer and following the instructions or by using your
distribution's package manager (note that this version is not guaranteed to be up-to-date):

Ubuntu, Debian, Mint:

sudo apt-get install haskell-platform

Fedora:

sudo dnf install haskell-platform

Redhat:

sudo yum install haskell-platform

Arch Linux:

sudo pacman -S ghc cabal-install haskell-haddock-api \
 haskell-haddock-library happy alex

https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/
http://www.haskell.org
http://tryhaskell.org/
http://www.haskell.org/ghc
http://www.haskell.org/cabal/
http://haskellstack.org
http://haskellstack.org
http://www.haskell.org/platform
http://www.haskell.org/platform
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 3

Gentoo:

sudo layman -a haskell
sudo emerge haskell-platform

OSX with Homebrew:

brew cask install haskell-platform

OSX with MacPorts:

sudo port install haskell-platform

Once installed, it should be possible to start GHCi by invoking the ghci command anywhere in the terminal. If the
installation went well, the console should look something like

me@notebook:~$ ghci
GHCi, version 6.12.1: http://www.haskell.org/ghc/ :? for help
Prelude>

possibly with some more information on what libraries have been loaded before the Prelude>. Now, the console
has become a Haskell REPL and you can execute Haskell code as with the online REPL. In order to quit this
interactive environment, one can type :qor :quit. For more information on what commands are available in GHCi,
type :? as indicated in the starting screen.

Because writing the same things again and again on a single line is not always that practically, it might be a good
idea to write the Haskell code in files. These files normally have .hs for an extension and can be loaded into the
REPL by using :l or :load.

As mentioned earlier, GHCi is a part of the GHC, which is actually a compiler. This compiler can be used to transform
a .hs file with Haskell code into a running program. Because a .hs file can contain a lot of functions, a main function
must be defined in the file. This will be the starting point for the program. The file test.hs can be compiled with the
command

ghc test.hs

this will create object files and an executable if there were no errors and the main function was defined correctly.

More advanced tools

It has already been mentioned earlier as package manager, but stack can be a useful tool for Haskell1.
development in completely different ways. Once installed, it is capable of

installing (multiple versions of) GHC
project creation and scaffolding
dependency management
building and testing projects
benchmarking

IHaskell is a haskell kernel for IPython and allows to combine (runnable) code with markdown and2.
mathematical notation.

http://haskellstack.org
https://github.com/gibiansky/IHaskell
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 4

Section 1.2: Hello, World!
A basic "Hello, World!" program in Haskell can be expressed concisely in just one or two lines:

main :: IO ()
main = putStrLn "Hello, World!"

The first line is an optional type annotation, indicating that main is a value of type IO (), representing an I/O action
which "computes" a value of type () (read "unit"; the empty tuple conveying no information) besides performing
some side effects on the outside world (here, printing a string at the terminal). This type annotation is usually
omitted for main because it is its only possible type.

Put this into a helloworld.hs file and compile it using a Haskell compiler, such as GHC:

ghc helloworld.hs

Executing the compiled file will result in the output "Hello, World!" being printed to the screen:

./helloworld
Hello, World!

Alternatively, runhaskell or runghc make it possible to run the program in interpreted mode without having to
compile it:

runhaskell helloworld.hs

The interactive REPL can also be used instead of compiling. It comes shipped with most Haskell environments, such
as ghci which comes with the GHC compiler:

ghci> putStrLn "Hello World!"
Hello, World!
ghci>

Alternatively, load scripts into ghci from a file using load (or :l):

ghci> :load helloworld

:reload (or :r) reloads everything in ghci:

Prelude> :l helloworld.hs
[1 of 1] Compiling Main (helloworld.hs, interpreted)

<some time later after some edits>

*Main> :r
Ok, modules loaded: Main.

Explanation:

This first line is a type signature, declaring the type of main:

main :: IO ()

Values of type IO () describe actions which can interact with the outside world.

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 5

Because Haskell has a fully-fledged Hindley-Milner type system which allows for automatic type inference, type
signatures are technically optional: if you simply omit the main :: IO (), the compiler will be able to infer the type
on its own by analyzing the definition of main. However, it is very much considered bad style not to write type
signatures for top-level definitions. The reasons include:

Type signatures in Haskell are a very helpful piece of documentation because the type system is so
expressive that you often can see what sort of thing a function is good for simply by looking at its type. This
“documentation” can be conveniently accessed with tools like GHCi. And unlike normal documentation, the
compiler's type checker will make sure it actually matches the function definition!

Type signatures keep bugs local. If you make a mistake in a definition without providing its type signature, the
compiler may not immediately report an error but instead simply infer a nonsensical type for it, with which it
actually typechecks. You may then get a cryptic error message when using that value. With a signature, the
compiler is very good at spotting bugs right where they happen.

This second line does the actual work:

main = putStrLn "Hello, World!"

If you come from an imperative language, it may be helpful to note that this definition can also be written as:

main = do {
 putStrLn "Hello, World!" ;
 return ()
 }

Or equivalently (Haskell has layout-based parsing; but beware mixing tabs and spaces inconsistently which will
confuse this mechanism):

main = do
 putStrLn "Hello, World!"
 return ()

Each line in a do block represents some monadic (here, I/O) computation, so that the whole do block represents the
overall action comprised of these sub-steps by combining them in a manner specific to the given monad (for I/O
this means just executing them one after another).

The do syntax is itself a syntactic sugar for monads, like IO here, and return is a no-op action producing its
argument without performing any side effects or additional computations which might be part of a particular
monad definition.

The above is the same as defining main = putStrLn "Hello, World!", because the value putStrLn "Hello,
World!" already has the type IO (). Viewed as a “statement”, putStrLn "Hello, World!" can be seen as a
complete program, and you simply define main to refer to this program.

You can look up the signature of putStrLn online:

putStrLn :: String -> IO ()
-- thus,
putStrLn (v :: String) :: IO ()

putStrLn is a function that takes a string as its argument and outputs an I/O-action (i.e. a value representing a
program that the runtime can execute). The runtime always executes the action named main, so we simply need to
define it as equal to putStrLn "Hello, World!".

https://en.wikipedia.org/wiki/Hindley-Milner_type_inference
http://hayoo.fh-wedel.de/?query=putStrLn
http://hayoo.fh-wedel.de/?query=putStrLn
http://hayoo.fh-wedel.de/?query=putStrLn
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 6

Section 1.3: Factorial
The factorial function is a Haskell "Hello World!" (and for functional programming generally) in the sense that it
succinctly demonstrates basic principles of the language.

Variation 1
fac :: (Integral a) => a -> a
fac n = product [1..n]

Live demo

Integral is the class of integral number types. Examples include Int and Integer.
(Integral a) => places a constraint on the type a to be in said class
fac :: a -> a says that fac is a function that takes an a and returns an a
product is a function that accumulates all numbers in a list by multiplying them together.
[1..n] is special notation which desugars to enumFromTo 1 n, and is the range of numbers 1 ≤ x ≤ n.

Variation 2
fac :: (Integral a) => a -> a
fac 0 = 1
fac n = n * fac (n - 1)

Live demo

This variation uses pattern matching to split the function definition into separate cases. The first definition is
invoked if the argument is 0 (sometimes called the stop condition) and the second definition otherwise (the order of
definitions is significant). It also exemplifies recursion as fac refers to itself.

It is worth noting that, due to rewrite rules, both versions of fac will compile to identical machine code when using
GHC with optimizations activated. So, in terms of efficiency, the two would be equivalent.

Section 1.4: Fibonacci, Using Lazy Evaluation
Lazy evaluation means Haskell will evaluate only list items whose values are needed.

The basic recursive definition is:

f (0) <- 0
f (1) <- 1
f (n) <- f (n-1) + f (n-2)

If evaluated directly, it will be very slow. But, imagine we have a list that records all the results,

fibs !! n <- f (n)

Then

 ┌──────┐ ┌──────┐ ┌──────┐
 │ f(0) │ │ f(1) │ │ f(2) │
fibs -> 0 : 1 : │ + │ : │ + │ : │ + │ :
 │ f(1) │ │ f(2) │ │ f(3) │
 └──────┘ └──────┘ └──────┘

 ┌──┐

http://coliru.stacked-crooked.com/a/7410a751e5007db6
http://coliru.stacked-crooked.com/a/1e80dec346f844f6
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 7

 │ f(0) : f(1) : f(2) : │
 └──┘
 -> 0 : 1 : +
 ┌──┐
 │ f(1) : f(2) : f(3) : │
 └──┘

This is coded as:

fibn n = fibs !! n
 where
 fibs = 0 : 1 : map f [2..]
 f n = fibs !! (n-1) + fibs !! (n-2)

Or even as

GHCi> let fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
GHCi> take 10 fibs
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

zipWith makes a list by applying a given binary function to corresponding elements of the two lists given to it, so
zipWith (+) [x1, x2, ...] [y1, y2, ...] is equal to [x1 + y1, x2 + y2, ...].

Another way of writing fibs is with the scanl function:

GHCi> let fibs = 0 : scanl (+) 1 fibs
GHCi> take 10 fibs
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

scanl builds the list of partial results that foldl would produce, working from left to right along the input list. That
is, scanl f z0 [x1, x2, ...] is equal to [z0, z1, z2, ...] where z1 = f z0 x1; z2 = f z1 x2;

Thanks to lazy evaluation, both functions define infinite lists without computing them out entirely. That is, we can
write a fib function, retrieving the nth element of the unbounded Fibonacci sequence:

GHCi> let fib n = fibs !! n -- (!!) being the list subscript operator
-- or in point-free style:
GHCi> let fib = (fibs !!)
GHCi> fib 9
34

Section 1.5: Primes
A few most salient variants:

Below 100
import Data.List ((\\))

ps100 = ((([2..100] \\ [4,6..100]) \\ [6,9..100]) \\ [10,15..100]) \\ [14,21..100]

 -- = (((2:[3,5..100]) \\ [9,15..100]) \\ [25,35..100]) \\ [49,63..100]

 -- = (2:[3,5..100]) \\ ([9,15..100] ++ [25,35..100] ++ [49,63..100])

Unlimited

Sieve of Eratosthenes, using data-ordlist package:

http://hackage.haskell.org/package/base-4.9.0.0/docs/Prelude.html#v:scanl
http://hackage.haskell.org/package/base-4.9.0.0/docs/Prelude.html#v:scanl
https://hackage.haskell.org/package/data-ordlist-0.4.7.0/docs/Data-List-Ordered.html
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 8

import qualified Data.List.Ordered

ps = 2 : _Y ((3:) . minus [5,7..] . unionAll . map (\p -> [p*p, p*p+2*p..]))

_Y g = g (_Y g) -- = g (g (_Y g)) = g (g (g (g (...)))) = g . g . g . g

Traditional

(a sub-optimal trial division sieve)

ps = sieve [2..]
 where
 sieve (x:xs) = [x] ++ sieve [y | y <- xs, rem y x > 0]

-- = map head (iterate (\(x:xs) -> filter ((> 0).(`rem` x)) xs) [2..])

Optimal trial division
ps = 2 : [n | n <- [3..], all ((> 0).rem n) $ takeWhile ((<= n).(^2)) ps]

-- = 2 : [n | n <- [3..], foldr (\p r-> p*p > n || (rem n p > 0 && r)) True ps]

Transitional

From trial division to sieve of Eratosthenes:

[n | n <- [2..], []==[i | i <- [2..n-1], j <- [0,i..n], j==n]]

The Shortest Code
nubBy (((>1).).gcd) [2..] -- i.e., nubBy (\a b -> gcd a b > 1) [2..]

nubBy is also from Data.List, like (\\).

Section 1.6: Declaring Values
We can declare a series of expressions in the REPL like this:

Prelude> let x = 5
Prelude> let y = 2 * 5 + x
Prelude> let result = y * 10
Prelude> x
5
Prelude> y
15
Prelude> result
150

To declare the same values in a file we write the following:

-- demo.hs

module Demo where
-- We declare the name of our module so
-- it can be imported by name in a project.

x = 5

y = 2 * 5 + x

result = y * 10

http://hackage.haskell.org/package/base-4.9.0.0/docs/Data-List.html#v:nubBy
http://hackage.haskell.org/package/base-4.9.0.0/docs/Data-List.html#v:nubBy
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 9

Module names are capitalized, unlike variable names.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 10

Chapter 2: Overloaded Literals
Section 2.1: Strings
The type of the literal

Without any extensions, the type of a string literal – i.e., something between double quotes – is just a string, aka list
of characters:

Prelude> :t "foo"
"foo" :: [Char]

However, when the OverloadedStrings extension is enabled, string literals become polymorphic, similar to number
literals:

Prelude> :set -XOverloadedStrings
Prelude> :t "foo"
"foo" :: Data.String.IsString t => t

This allows us to define values of string-like types without the need for any explicit conversions. In essence, the
OverloadedStrings extension just wraps every string literal in the generic fromString conversion function, so if the
context demands e.g. the more efficient Text instead of String, you don't need to worry about that yourself.

Using string literals
{-# LANGUAGE OverloadedStrings #-}

import Data.Text (Text, pack)
import Data.ByteString (ByteString, pack)

withString :: String
withString = "Hello String"

-- The following two examples are only allowed with OverloadedStrings

withText :: Text
withText = "Hello Text" -- instead of: withText = Data.Text.pack "Hello Text"

withBS :: ByteString
withBS = "Hello ByteString" -- instead of: withBS = Data.ByteString.pack "Hello ByteString"

Notice how we were able to construct values of Text and ByteString in the same way we construct ordinary String
(or [Char]) Values, rather than using each types pack function to encode the string explicitly.

For more information on the OverloadedStrings language extension, see the extension documentation.

Section 2.2: Floating Numeral
The type of the literal
Prelude> :t 1.0
1.0 :: Fractional a => a

Choosing a concrete type with annotations

You can specify the type with a type annotation. The only requirement is that the type must have a Fractional

http://hackage.haskell.org/package/base-4.9.0.0/docs/Data-String.html#v:fromString
http://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 11

instance.

Prelude> 1.0 :: Double
1.0
it :: Double
Prelude> 1.0 :: Data.Ratio.Ratio Int
1 % 1
it :: GHC.Real.Ratio Int

if not the compiler will complain

Prelude> 1.0 :: Int
<interactive>:
 No instance for (Fractional Int) arising from the literal `1.0'
 In the expression: 1.0 :: Int
 In an equation for `it': it = 1.0 :: Int

Section 2.3: Integer Numeral
The type of the literal
Prelude> :t 1
1 :: Num a => a

choosing a concrete type with annotations

You can specify the type as long as the target type is Num with an annotation:

Prelude> 1 :: Int
1
it :: Int
Prelude> 1 :: Double
1.0
it :: Double
Prelude> 1 :: Word
1
it :: Word

if not the compiler will complain

Prelude> 1 :: String

<interactive>:
 No instance for (Num String) arising from the literal `1'
 In the expression: 1 :: String
 In an equation for `it': it = 1 :: String

Section 2.4: List Literals
GHC's OverloadedLists extension allows you to construct list-like data structures with the list literal syntax.

This allows you to Data.Map like this:

> :set -XOverloadedLists
> import qualified Data.Map as M
> M.lookup "foo" [("foo", 1), ("bar", 2)]
Just 1

https://downloads.haskell.org/%7Eghc/latest/docs/html/users_guide/type-class-extensions.html#overloaded-lists
http://hackage.haskell.org/package/containers/docs/Data-Map-Lazy.html
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 12

Instead of this (note the use of the extra M.fromList):

> import Data.Map as M
> M.lookup "foo" (M.fromList [("foo", 1), ("bar", 2)])
Just 1

http://hackage.haskell.org/package/containers/docs/Data-Map-Lazy.html#v:fromList
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 13

Chapter 3: Foldable
Foldable is the class of types t :: * -> * which admit a folding operation. A fold aggregates the elements of a
structure in a well-defined order, using a combining function.

Section 3.1: Definition of Foldable
class Foldable t where
 {-# MINIMAL foldMap | foldr #-}

 foldMap :: Monoid m => (a -> m) -> t a -> m
 foldMap f = foldr (mappend . f) mempty

 foldr :: (a -> b -> b) -> b -> t a -> b
 foldr f z t = appEndo (foldMap (Endo #. f) t) z

 -- and a number of optional methods

Intuitively (though not technically), Foldable structures are containers of elements a which allow access to their
elements in a well-defined order. The foldMap operation maps each element of the container to a Monoid and
collapses them using the Monoid structure.

Section 3.2: An instance of Foldable for a binary tree
To instantiate Foldable you need to provide a definition for at least foldMap or foldr.

data Tree a = Leaf
 | Node (Tree a) a (Tree a)

instance Foldable Tree where
 foldMap f Leaf = mempty
 foldMap f (Node l x r) = foldMap f l `mappend` f x `mappend` foldMap f r

 foldr f acc Leaf = acc
 foldr f acc (Node l x r) = foldr f (f x (foldr f acc r)) l

This implementation performs an in-order traversal of the tree.

ghci> let myTree = Node (Node Leaf 'a' Leaf) 'b' (Node Leaf 'c' Leaf)

-- +--'b'--+
-- | |
-- +-'a'-+ +-'c'-+
-- | | | |
-- * * * *

ghci> toList myTree
"abc"

The DeriveFoldable extension allows GHC to generate Foldable instances based on the structure of the type. We
can vary the order of the machine-written traversal by adjusting the layout of the Node constructor.

data Inorder a = ILeaf
 | INode (Inorder a) a (Inorder a) -- as before
 deriving Foldable

https://en.wikipedia.org/wiki/Tree_traversal#In-order
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 14

data Preorder a = PrLeaf
 | PrNode a (Preorder a) (Preorder a)
 deriving Foldable

data Postorder a = PoLeaf
 | PoNode (Postorder a) (Postorder a) a
 deriving Foldable

-- injections from the earlier Tree type
inorder :: Tree a -> Inorder a
inorder Leaf = ILeaf
inorder (Node l x r) = INode (inorder l) x (inorder r)

preorder :: Tree a -> Preorder a
preorder Leaf = PrLeaf
preorder (Node l x r) = PrNode x (preorder l) (preorder r)

postorder :: Tree a -> Postorder a
postorder Leaf = PoLeaf
postorder (Node l x r) = PoNode (postorder l) (postorder r) x

ghci> toList (inorder myTree)
"abc"
ghci> toList (preorder myTree)
"bac"
ghci> toList (postorder myTree)
"acb"

Section 3.3: Counting the elements of a Foldable structure
length counts the occurrences of elements a in a foldable structure t a.

ghci> length [7, 2, 9] -- t ~ []
3
ghci> length (Right 'a') -- t ~ Either e
1 -- 'Either e a' may contain zero or one 'a'
ghci> length (Left "foo") -- t ~ Either String
0
ghci> length (3, True) -- t ~ (,) Int
1 -- '(c, a)' always contains exactly one 'a'

length is defined as being equivalent to:

class Foldable t where
 -- ...
 length :: t a -> Int
 length = foldl' (\c _ -> c+1) 0

Note that this return type Int restricts the operations that can be performed on values obtained by calls to the
length function. fromIntegralis a useful function that allows us to deal with this problem.

Section 3.4: Folding a structure in reverse
Any fold can be run in the opposite direction with the help of the Dual monoid, which flips an existing monoid so
that aggregation goes backwards.

newtype Dual a = Dual { getDual :: a }

https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Monoid.html#t:Dual
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Monoid.html#t:Dual
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Monoid.html#t:Dual
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 15

instance Monoid m => Monoid (Dual m) where
 mempty = Dual mempty
 (Dual x) `mappend` (Dual y) = Dual (y `mappend` x)

When the underlying monoid of a foldMap call is flipped with Dual, the fold runs backwards; the following Reverse
type is defined in Data.Functor.Reverse:

newtype Reverse t a = Reverse { getReverse :: t a }

instance Foldable t => Foldable (Reverse t) where
 foldMap f = getDual . foldMap (Dual . f) . getReverse

We can use this machinery to write a terse reverse for lists:

reverse :: [a] -> [a]
reverse = toList . Reverse

Section 3.5: Flattening a Foldable structure into a list
toList flattens a Foldable structure t a into a list of as.

ghci> toList [7, 2, 9] -- t ~ []
[7, 2, 9]
ghci> toList (Right 'a') -- t ~ Either e
"a"
ghci> toList (Left "foo") -- t ~ Either String
[]
ghci> toList (3, True) -- t ~ (,) Int
[True]

toList is defined as being equivalent to:

class Foldable t where
 -- ...
 toList :: t a -> [a]
 toList = foldr (:) []

Section 3.6: Performing a side-eect for each element of a
Foldable structure
traverse_ executes an Applicative action for every element in a Foldable structure. It ignores the action's result,
keeping only the side-effects. (For a version which doesn't discard results, use Traversable.)

-- using the Writer applicative functor (and the Sum monoid)
ghci> runWriter $ traverse_ (\x -> tell (Sum x)) [1,2,3]
((),Sum {getSum = 6})
-- using the IO applicative functor
ghci> traverse_ putStrLn (Right "traversing")
traversing
ghci> traverse_ putStrLn (Left False)
-- nothing printed

for_ is traverse_ with the arguments flipped. It resembles a foreach loop in an imperative language.

ghci> let greetings = ["Hello", "Bonjour", "Hola"]
ghci> :{

https://hackage.haskell.org/package/transformers-0.5.2.0/docs/Data-Functor-Reverse.html
https://hackage.haskell.org/package/transformers-0.5.2.0/docs/Data-Functor-Reverse.html
https://hackage.haskell.org/package/transformers-0.5.2.0/docs/Data-Functor-Reverse.html
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 16

ghci| for_ greetings $ \greeting -> do
ghci| print (greeting ++ " Stack Overflow!")
ghci| :}
"Hello Stack Overflow!"
"Bonjour Stack Overflow!"
"Hola Stack Overflow!"

sequenceA_ collapses a Foldable full of Applicative actions into a single action, ignoring the result.

ghci> let actions = [putStrLn "one", putStLn "two"]
ghci> sequenceA_ actions
one
two

traverse_ is defined as being equivalent to:

traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
traverse_ f = foldr (\x action -> f x *> action) (pure ())

sequenceA_ is defined as:

sequenceA_ :: (Foldable t, Applicative f) -> t (f a) -> f ()
sequenceA_ = traverse_ id

Moreover, when the Foldable is also a Functor, traverse_ and sequenceA_ have the following relationship:

traverse_ f = sequenceA_ . fmap f

Section 3.7: Flattening a Foldable structure into a Monoid
foldMap maps each element of the Foldable structure to a Monoid, and then combines them into a single value.

foldMap and foldr can be defined in terms of one another, which means that instances of Foldable need only give
a definition for one of them.

class Foldable t where
 foldMap :: Monoid m => (a -> m) -> t a -> m
 foldMap f = foldr (mappend . f) mempty

Example usage with the Product monoid:

product :: (Num n, Foldable t) => t n -> n
product = getProduct . foldMap Product

Section 3.8: Checking if a Foldable structure is empty
null returns True if there are no elements a in a foldable structure t a, and False if there is one or more.
Structures for which null is True have a length of 0.

ghci> null []
True
ghci> null [14, 29]
False
ghci> null Nothing
True
ghci> null (Right 'a')

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 17

False
ghci> null ('x', 3)
False

null is defined as being equivalent to:

class Foldable t where
 -- ...
 null :: t a -> Bool
 null = foldr (_ _ -> False) True

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 18

Chapter 4: Traversable
The Traversable class generalises the function formerly known as mapM :: Monad m => (a -> m b) -> [a] -> m
[b] to work with Applicative effects over structures other than lists.

Section 4.1: Definition of Traversable
class (Functor t, Foldable t) => Traversable t where
 {-# MINIMAL traverse | sequenceA #-}

 traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
 traverse f = sequenceA . fmap f

 sequenceA :: Applicative f => t (f a) -> f (t a)
 sequenceA = traverse id

 mapM :: Monad m => (a -> m b) -> t a -> m (t b)
 mapM = traverse

 sequence :: Monad m => t (m a) -> m (t a)
 sequence = sequenceA

Traversable structures t are finitary containers of elements a which can be operated on with an effectful "visitor"
operation. The visitor function f :: a -> f b performs a side-effect on each element of the structure and
traverse composes those side-effects using Applicative. Another way of looking at it is that sequenceA says
Traversable structures commute with Applicatives.

Section 4.2: Traversing a structure in reverse
A traversal can be run in the opposite direction with the help of the Backwards applicative functor, which flips an
existing applicative so that composed effects take place in reversed order.

newtype Backwards f a = Backwards { forwards :: f a }

instance Applicative f => Applicative (Backwards f) where
 pure = Backwards . pure
 Backwards ff <*> Backwards fx = Backwards ((\x f -> f x) <$> fx <*> ff)

Backwards can be put to use in a "reversed traverse". When the underlying applicative of a traverse call is flipped
with Backwards, the resulting effect happens in reverse order.

newtype Reverse t a = Reverse { getReverse :: t a }

instance Traversable t => Traversable (Reverse t) where
 traverse f = fmap Reverse . forwards . traverse (Backwards . f) . getReverse

ghci> traverse print (Reverse "abc")
'c'
'b'
'a'

The Reverse newtype is found under Data.Functor.Reverse.

http://stackoverflow.com/a/32821966/1523776
https://hackage.haskell.org/package/transformers-0.5.2.0/docs/Control-Applicative-Backwards.html
https://hackage.haskell.org/package/transformers-0.5.2.0/docs/Control-Applicative-Backwards.html
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 19

Section 4.3: An instance of Traversable for a binary tree
Implementations of traverse usually look like an implementation of fmap lifted into an Applicative context.

data Tree a = Leaf
 | Node (Tree a) a (Tree a)

instance Traversable Tree where
 traverse f Leaf = pure Leaf
 traverse f (Node l x r) = Node <$> traverse f l <*> f x <*> traverse f r

This implementation performs an in-order traversal of the tree.

ghci> let myTree = Node (Node Leaf 'a' Leaf) 'b' (Node Leaf 'c' Leaf)

-- +--'b'--+
-- | |
-- +-'a'-+ +-'c'-+
-- | | | |
-- * * * *

ghci> traverse print myTree
'a'
'b'
'c'

The DeriveTraversable extension allows GHC to generate Traversable instances based on the structure of the
type. We can vary the order of the machine-written traversal by adjusting the layout of the Node constructor.

data Inorder a = ILeaf
 | INode (Inorder a) a (Inorder a) -- as before
 deriving (Functor, Foldable, Traversable) -- also using DeriveFunctor and
DeriveFoldable

data Preorder a = PrLeaf
 | PrNode a (Preorder a) (Preorder a)
 deriving (Functor, Foldable, Traversable)

data Postorder a = PoLeaf
 | PoNode (Postorder a) (Postorder a) a
 deriving (Functor, Foldable, Traversable)

-- injections from the earlier Tree type
inorder :: Tree a -> Inorder a
inorder Leaf = ILeaf
inorder (Node l x r) = INode (inorder l) x (inorder r)

preorder :: Tree a -> Preorder a
preorder Leaf = PrLeaf
preorder (Node l x r) = PrNode x (preorder l) (preorder r)

postorder :: Tree a -> Postorder a
postorder Leaf = PoLeaf
postorder (Node l x r) = PoNode (postorder l) (postorder r) x

ghci> traverse print (inorder myTree)
'a'
'b'
'c'
ghci> traverse print (preorder myTree)

https://en.wikipedia.org/wiki/Tree_traversal#In-order
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 20

'b'
'a'
'c'
ghci> traverse print (postorder myTree)
'a'
'c'
'b'

Section 4.4: Traversable structures as shapes with contents
If a type t is Traversable then values of t a can be split into two pieces: their "shape" and their "contents":

data Traversed t a = Traversed { shape :: t (), contents :: [a] }

where the "contents" are the same as what you'd "visit" using a Foldable instance.

Going one direction, from t a to Traversed t a doesn't require anything but Functor and Foldable

break :: (Functor t, Foldable t) => t a -> Traversed t a
break ta = Traversed (fmap (const ()) ta) (toList ta)

but going back uses the traverse function crucially

import Control.Monad.State

-- invariant: state is non-empty
pop :: State [a] a
pop = state $ \(a:as) -> (a, as)

recombine :: Traversable t => Traversed t a -> t a
recombine (Traversed s c) = evalState (traverse (const pop) s) c

The Traversable laws require that break . recombine and recombine . break are both identity. Notably, this
means that there are exactly the right number elements in contents to fill shape completely with no left-overs.

Traversed t is Traversable itself. The implementation of traverse works by visiting the elements using the list's
instance of Traversable and then reattaching the inert shape to the result.

instance Traversable (Traversed t) where
 traverse f (Traversed s c) = fmap (Traversed s) (traverse f c)

Section 4.5: Instantiating Functor and Foldable for a
Traversable structure
import Data.Traversable as Traversable

data MyType a = -- ...
instance Traversable MyType where
 traverse = -- ...

Every Traversable structure can be made a Foldable Functor using the fmapDefault and foldMapDefault
functions found in Data.Traversable.

instance Functor MyType where
 fmap = Traversable.fmapDefault

https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Traversable.html#v:fmapDefault
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Traversable.html#v:foldMapDefault
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 21

instance Foldable MyType where
 foldMap = Traversable.foldMapDefault

fmapDefault is defined by running traverse in the Identity applicative functor.

newtype Identity a = Identity { runIdentity :: a }

instance Applicative Identity where
 pure = Identity
 Identity f <*> Identity x = Identity (f x)

fmapDefault :: Traversable t => (a -> b) -> t a -> t b
fmapDefault f = runIdentity . traverse (Identity . f)

foldMapDefault is defined using the Const applicative functor, which ignores its parameter while accumulating a
monoidal value.

newtype Const c a = Const { getConst :: c }

instance Monoid m => Applicative (Const m) where
 pure _ = Const mempty
 Const x <*> Const y = Const (x `mappend` y)

foldMapDefault :: (Traversable t, Monoid m) => (a -> m) -> t a -> m
foldMapDefault f = getConst . traverse (Const . f)

Section 4.6: Transforming a Traversable structure with the
aid of an accumulating parameter
The two mapAccum functions combine the operations of folding and mapping.

-- A Traversable structure
-- |
-- A seed value |
-- | |
-- |-| |---|
mapAccumL, mapAccumR :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)
-- |------------------| |--------|
-- | |
-- A folding function which produces a new mapped |
-- element 'c' and a new accumulator value 'a'
-- Final accumulator value
-- and mapped structure

These functions generalise fmap in that they allow the mapped values to depend on what has happened earlier in
the fold. They generalise foldl/foldr in that they map the structure in place as well as reducing it to a value.

For example, tails can be implemented using mapAccumR and its sister inits can be implemented using mapAccumL.

tails, inits :: [a] -> [[a]]
tails = uncurry (:) . mapAccumR (\xs x -> (x:xs, xs)) []
inits = uncurry snoc . mapAccumL (\xs x -> (x `snoc` xs, xs)) []
 where snoc x xs = xs ++ [x]

ghci> tails "abc"
["abc", "bc", "c", ""]
ghci> inits "abc"

https://hackage.haskell.org/package/transformers-0.2.2.1/docs/Data-Functor-Identity.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Const.html
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 22

["", "a", "ab", "abc"]

mapAccumL is implemented by traversing in the State applicative functor.

{-# LANGUAGE DeriveFunctor #-}

newtype State s a = State { runState :: s -> (s, a) } deriving Functor
instance Applicative (State s) where
 pure x = State $ \s -> (s, x)
 State ff <*> State fx = State $ \s -> let (t, f) = ff s
 (u, x) = fx t
 in (u, f x)

mapAccumL f z t = runState (traverse (State . flip f) t) z

mapAccumR works by running mapAccumL in reverse.

mapAccumR f z = fmap getReverse . mapAccumL f z . Reverse

Section 4.7: Transposing a list of lists
Noting that zip transposes a tuple of lists into a list of tuples,

ghci> uncurry zip ([1,2],[3,4])
[(1,3), (2,4)]

and the similarity between the types of transpose and sequenceA,

-- transpose exchanges the inner list with the outer list
-- +---+-->--+-+
-- | | | |
transpose :: [[a]] -> [[a]]
-- | | | |
-- +-+-->--+---+

-- sequenceA exchanges the inner Applicative with the outer Traversable
-- +------>------+
-- | |
sequenceA :: (Traversable t, Applicative f) => t (f a) -> f (t a)
-- | |
-- +--->---+

the idea is to use []'s Traversable and Applicative structure to deploy sequenceA as a sort of n-ary zip, zipping
together all the inner lists together pointwise.

[]'s default "prioritised choice" Applicative instance is not appropriate for our use - we need a "zippy"
Applicative. For this we use the ZipList newtype, found in Control.Applicative.

newtype ZipList a = ZipList { getZipList :: [a] }

instance Applicative ZipList where
 pure x = ZipList (repeat x)
 ZipList fs <*> ZipList xs = ZipList (zipWith ($) fs xs)

Now we get transpose for free, by traversing in the ZipList Applicative.

transpose :: [[a]] -> [[a]]

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 23

transpose = getZipList . traverse ZipList

ghci> let myMatrix = [[1,2,3],[4,5,6],[7,8,9]]
ghci> transpose myMatrix
[[1,4,7],[2,5,8],[3,6,9]]

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 24

Chapter 5: Lens
Lens is a library for Haskell that provides lenses, isomorphisms, folds, traversals, getters and setters, which exposes
a uniform interface for querying and manipulating arbitrary structures, not unlike Java's accessor and mutator
concepts.

Section 5.1: Lenses for records
Simple record
{-# LANGUAGE TemplateHaskell #-}
import Control.Lens

data Point = Point {
 _x :: Float,
 _y :: Float
}
makeLenses ''Point

Lenses x and y are created.

let p = Point 5.0 6.0
p ^. x -- returns 5.0
set x 10 p -- returns Point { _x = 10.0, _y = 6.0 }
p & x +~ 1 -- returns Point { _x = 6.0, _y = 6.0 }

Managing records with repeating fields names
data Person = Person { _personName :: String }
makeFields ''Person

Creates a type class HasName, lens name for Person, and makes Person an instance of HasName. Subsequent records
will be added to the class as well:

data Entity = Entity { _entityName :: String }
makeFields ''Entity

The Template Haskell extension is required for makeFields to work. Technically, it's entirely possible to create the
lenses made this way via other means, e.g. by hand.

Section 5.2: Manipulating tuples with Lens
Getting

("a", 1) ^. _1 -- returns "a"
("a", 1) ^. _2 -- returns 1

Setting

("a", 1) & _1 .~ "b" -- returns ("b", 1)

Modifying

("a", 1) & _2 %~ (+1) -- returns ("a", 2)

both Traversal

https://hackage.haskell.org/package/lens
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 25

(1, 2) & both *~ 2 -- returns (2, 4)

Section 5.3: Lens and Prism
A Lens' s a means that you can always find an a within any s. A Prism' s a means that you can sometimes find
that s actually just is a but sometimes it's something else.

To be more clear, we have _1 :: Lens' (a, b) a because any tuple always has a first element. We have _Just ::
Prism' (Maybe a) a because sometimes Maybe a is actually an a value wrapped in Just but sometimes it's Nothing.

With this intuition, some standard combinators can be interpreted parallel to one another

view :: Lens' s a -> (s -> a) "gets" the a out of the s
set :: Lens' s a -> (a -> s -> s) "sets" the a slot in s
review :: Prism' s a -> (a -> s) "realizes" that an a could be an s
preview :: Prism' s a -> (s -> Maybe a) "attempts" to turn an s into an a.

Another way to think about it is that a value of type Lens' s a demonstrates that s has the same structure as (r,
a) for some unknown r. On the other hand, Prism' s a demonstrates that s has the same structure as Either r a
for some r. We can write those four functions above with this knowledge:

-- `Lens' s a` is no longer supplied, instead we just *know* that `s ~ (r, a)`

view :: (r, a) -> a
view (r, a) = a

set :: a -> (r, a) -> (r, a)
set a (r, _) = (r, a)

-- `Prism' s a` is no longer supplied, instead we just *know* that `s ~ Either r a`

review :: a -> Either r a
review a = Right a

preview :: Either r a -> Maybe a
preview (Left _) = Nothing
preview (Right a) = Just a

Section 5.4: Stateful Lenses
Lens operators have useful variants that operate in stateful contexts. They are obtained by replacing ~ with = in the
operator name.

(+~) :: Num a => ASetter s t a a -> a -> s -> t
(+=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()

Note: The stateful variants aren't expected to change the type, so they have the Lens' or Simple Lens'
signatures.

Getting rid of & chains

If lens-ful operations need to be chained, it often looks like this:

change :: A -> A

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 26

change a = a & lensA %~ operationA
 & lensB %~ operationB
 & lensC %~ operationC

This works thanks to the associativity of &. The stateful version is clearer, though.

change a = flip execState a $ do
 lensA %= operationA
 lensB %= operationB
 lensC %= operationC

If lensX is actually id, the whole operation can of course be executed directly by just lifting it with modify.

Imperative code with structured state

Assuming this example state:

data Point = Point { _x :: Float, _y :: Float }
data Entity = Entity { _position :: Point, _direction :: Float }
data World = World { _entities :: [Entity] }

makeLenses ''Point
makeLenses ''Entity
makeLenses ''World

We can write code that resembles classic imperative languages, while still allowing us to use benefits of Haskell:

updateWorld :: MonadState World m => m ()
updateWorld = do
 -- move the first entity
 entities . ix 0 . position . x += 1

 -- do some operation on all of them
 entities . traversed . position %= \p -> p `pointAdd` ...

 -- or only on a subset
 entities . traversed . filtered (\e -> e ^. position.x > 100) %= ...

Section 5.5: Lenses compose
If you have a f :: Lens' a b and a g :: Lens' b c then f . g is a Lens' a c gotten by following f first and then
g. Notably:

Lenses compose as functions (really they just are functions)
If you think of the view functionality of Lens, it seems like data flows "left to right"—this might feel backwards
to your normal intuition for function composition. On the other hand, it ought to feel natural if you think of .-
notation like how it happens in OO languages.

More than just composing Lens with Lens, (.) can be used to compose nearly any "Lens-like" type together. It's not
always easy to see what the result is since the type becomes tougher to follow, but you can use the lens chart to
figure it out. The composition x . y has the type of the least-upper-bound of the types of both x and y in that
chart.

Section 5.6: Writing a lens without Template Haskell
To demystify Template Haskell, suppose you have

https://hackage.haskell.org/package/lens
https://hackage.haskell.org/package/lens
https://hackage.haskell.org/package/lens
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 27

data Example a = Example { _foo :: Int, _bar :: a }

then

makeLenses 'Example

produces (more or less)

foo :: Lens' (Example a) Int
bar :: Lens (Example a) (Example b) a b

There's nothing particularly magical going on, though. You can write these yourself:

foo :: Lens' (Example a) Int
-- :: Functor f => (Int -> f Int) -> (Example a -> f (Example a)) ;; expand the alias
foo wrap (Example foo bar) = fmap (\newFoo -> Example newFoo bar) (wrap foo)

bar :: Lens (Example a) (Example b) a b
-- :: Functor f => (a -> f b) -> (Example a -> f (Example b)) ;; expand the alias
bar wrap (Example foo bar) = fmap (\newBar -> Example foo newBar) (wrap bar)

Essentially, you want to "visit" your lens' "focus" with the wrap function and then rebuild the "entire" type.

Section 5.7: Fields with makeFields
(This example copied from this StackOverflow answer)

Let's say you have a number of different data types that all ought to have a lens with the same name, in this case
capacity. The makeFields slice will create a class that accomplish this without namespace conflicts.

{-# LANGUAGE FunctionalDependencies
 , MultiParamTypeClasses
 , TemplateHaskell
 #-}

module Foo
where

import Control.Lens

data Foo
 = Foo { fooCapacity :: Int }
 deriving (Eq, Show)
$(makeFields ''Foo)

data Bar
 = Bar { barCapacity :: Double }
 deriving (Eq, Show)
$(makeFields ''Bar)

Then in ghci:

*Foo
λ let f = Foo 3
| b = Bar 7
|
b :: Bar

http://stackoverflow.com/a/34624414/163177
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 28

f :: Foo

*Foo
λ fooCapacity f
3
it :: Int

*Foo
λ barCapacity b
7.0
it :: Double

*Foo
λ f ^. capacity
3
it :: Int

*Foo
λ b ^. capacity
7.0
it :: Double

λ :info HasCapacity
class HasCapacity s a | s -> a where
 capacity :: Lens' s a
 -- Defined at Foo.hs:14:3
instance HasCapacity Foo Int -- Defined at Foo.hs:14:3
instance HasCapacity Bar Double -- Defined at Foo.hs:19:3

So what it's actually done is declared a class HasCapacity s a, where capacity is a Lens' from s to a (a is fixed once
s is known). It figured out the name "capacity" by stripping off the (lowercased) name of the data type from the
field; I find it pleasant not to have to use an underscore on either the field name or the lens name, since sometimes
record syntax is actually what you want. You can use makeFieldsWith and the various lensRules to have some
different options for calculating the lens names.

In case it helps, using ghci -ddump-splices Foo.hs:

[1 of 1] Compiling Foo (Foo.hs, interpreted)
Foo.hs:14:3-18: Splicing declarations
 makeFields ''Foo
 ======>
 class HasCapacity s a | s -> a where
 capacity :: Lens' s a
 instance HasCapacity Foo Int where
 {-# INLINE capacity #-}
 capacity = iso (\ (Foo x_a7fG) -> x_a7fG) Foo
Foo.hs:19:3-18: Splicing declarations
 makeFields ''Bar
 ======>
 instance HasCapacity Bar Double where
 {-# INLINE capacity #-}
 capacity = iso (\ (Bar x_a7ne) -> x_a7ne) Bar
Ok, modules loaded: Foo.

So the first splice made the class HasCapcity and added an instance for Foo; the second used the existing class and
made an instance for Bar.

This also works if you import the HasCapcity class from another module; makeFields can add more instances to
the existing class and spread your types out across multiple modules. But if you use it again in another module

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 29

where you haven't imported the class, it'll make a new class (with the same name), and you'll have two separate
overloaded capacity lenses that are not compatible.

Section 5.8: Classy Lenses
In addition to the standard makeLenses function for generating Lenses, Control.Lens.TH also offers the makeClassy
function. makeClassy has the same type and works in essentially the same way as makeLenses, with one key
difference. In addition to generating the standard lenses and traversals, if the type has no arguments, it will also
create a class describing all the datatypes which possess the type as a field. For example

data Foo = Foo { _fooX, _fooY :: Int }
 makeClassy ''Foo

will create

class HasFoo t where
 foo :: Simple Lens t Foo

instance HasFoo Foo where foo = id

fooX, fooY :: HasFoo t => Simple Lens t Int

Section 5.9: Traversals
A Traversal' s a shows that s has 0-to-many as inside of it.

toListOf :: Traversal' s a -> (s -> [a])

Any type t which is Traversable automatically has that traverse :: Traversal (t a) a.

We can use a Traversal to set or map over all of these a values

> set traverse 1 [1..10]
[1,1,1,1,1,1,1,1,1,1]

> over traverse (+1) [1..10]
[2,3,4,5,6,7,8,9,10,11]

A f :: Lens' s a says there's exactly one a inside of s. A g :: Prism' a b says there are either 0 or 1 bs in a.
Composing f . g gives us a Traversal' s b because following f and then g shows how there there are 0-to-1 bs in
s.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 30

Chapter 6: QuickCheck
Section 6.1: Declaring a property
At its simplest, a property is a function which returns a Bool.

prop_reverseDoesNotChangeLength xs = length (reverse xs) == length xs

A property declares a high-level invariant of a program. The QuickCheck test runner will evaluate the function with
100 random inputs and check that the result is always True.

By convention, functions that are properties have names which start with prop_.

Section 6.2: Randomly generating data for custom types
The Arbitrary class is for types that can be randomly generated by QuickCheck.

The minimal implementation of Arbitrary is the arbitrary method, which runs in the Gen monad to produce a
random value.

Here is an instance of Arbitrary for the following datatype of non-empty lists.

import Test.QuickCheck.Arbitrary (Arbitrary(..))
import Test.QuickCheck.Gen (oneof)
import Control.Applicative ((<$>), (<*>))

data NonEmpty a = End a | Cons a (NonEmpty a)

instance Arbitrary a => Arbitrary (NonEmpty a) where
 arbitrary = oneof [-- randomly select one of the cases from the list
 End <$> arbitrary, -- call a's instance of Arbitrary
 Cons <$>
 arbitrary <*> -- call a's instance of Arbitrary
 arbitrary -- recursively call NonEmpty's instance of Arbitrary
]

Section 6.3: Using implication (==>) to check properties with
preconditions
prop_evenNumberPlusOneIsOdd :: Integer -> Property
prop_evenNumberPlusOneIsOdd x = even x ==> odd (x + 1)

If you want to check that a property holds given that a precondition holds, you can use the

==>

operator. Note that if it's very unlikely for arbitrary inputs to match the precondition, QuickCheck can give up early.

prop_overlySpecific x y = x == 0 ==> x * y == 0

ghci> quickCheck prop_overlySpecific
*** Gave up! Passed only 31 tests.

Section 6.4: Checking a single property
The quickCheck function tests a property on 100 random inputs.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 31

ghci> quickCheck prop_reverseDoesNotChangeLength
+++ OK, passed 100 tests.

If a property fails for some input, quickCheck prints out a counterexample.

prop_reverseIsAlwaysEmpty xs = reverse xs == [] -- plainly not true for all xs

ghci> quickCheck prop_reverseIsAlwaysEmpty
*** Failed! Falsifiable (after 2 tests):
[()]

Section 6.5: Checking all the properties in a file
quickCheckAll is a Template Haskell helper which finds all the definitions in the current file whose name begins
with prop_ and tests them.

{-# LANGUAGE TemplateHaskell #-}

import Test.QuickCheck (quickCheckAll)
import Data.List (sort)

idempotent :: Eq a => (a -> a) -> a -> Bool
idempotent f x = f (f x) == f x

prop_sortIdempotent = idempotent sort

-- does not begin with prop_, will not be picked up by the test runner
sortDoesNotChangeLength xs = length (sort xs) == length xs

return []
main = $quickCheckAll

Note that the return [] line is required. It makes definitions textually above that line visible to Template Haskell.

$ runhaskell QuickCheckAllExample.hs
=== prop_sortIdempotent from tree.hs:7 ===
+++ OK, passed 100 tests.

Section 6.6: Limiting the size of test data
It can be difficult to test functions with poor asymptotic complexity using quickcheck as the random inputs are not
usually size bounded. By adding an upper bound on the size of the input we can still test these expensive functions.

import Data.List(permutations)
import Test.QuickCheck

longRunningFunction :: [a] -> Int
longRunningFunction xs = length (permutations xs)

factorial :: Integral a => a -> a
factorial n = product [1..n]

prop_numberOfPermutations xs =
 longRunningFunction xs == factorial (length xs)

ghci> quickCheckWith (stdArgs { maxSize = 10}) prop_numberOfPermutations

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 32

By using quickCheckWith with a modified version of stdArgs we can limit the size of the inputs to be at most 10. In
this case, as we are generating lists, this means we generate lists of up to size 10. Our permutations function
doesn't take too long to run for these short lists but we can still be reasonably confident that our definition is
correct.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 33

Chapter 7: Common GHC Language
Extensions
Section 7.1: RankNTypes
Imagine the following situation:

foo :: Show a => (a -> String) -> String -> Int -> IO ()
foo show' string int = do
 putStrLn (show' string)
 putStrLn (show' int)

Here, we want to pass in a function that converts a value into a String, apply that function to both a string
parameter and and int parameter and print them both. In my mind, there is no reason this should fail! We have a
function that works on both types of the parameters we're passing in.

Unfortunately, this won't type check! GHC infers the a type based off of its first occurrence in the function body.
That is, as soon as we hit:

putStrLn (show' string)

GHC will infer that show' :: String -> String, since string is a String. It will proceed to blow up while trying to
show' int.

RankNTypes lets you instead write the type signature as follows, quantifying over all functions that satisfy the show'
type:

foo :: (forall a. Show a => (a -> String)) -> String -> Int -> IO ()

This is rank 2 polymorphism: We are asserting that the show' function must work for all as within our function, and
the previous implementation now works.

The RankNTypes extension allows arbitrary nesting of forall ... blocks in type signatures. In other words, it allows
rank N polymorphism.

Section 7.2: OverloadedStrings
Normally, string literals in Haskell have a type of String (which is a type alias for [Char]). While this isn't a problem
for smaller, educational programs, real-world applications often require more efficient storage such as Text or
ByteString.

OverloadedStrings simply changes the type of literals to

"test" :: Data.String.IsString a => a

Allowing them to be directly passed to functions expecting such a type. Many libraries implement this interface for
their string-like types including Data.Text and Data.ByteString which both provide certain time and space
advantages over [Char].

There are also some unique uses of OverloadedStrings like those from the Postgresql-simple library which allows
SQL queries to be written in double quotes like a normal string, but provides protections against improper
concatenation, a notorious source of SQL injection attacks.

https://hackage.haskell.org/package/bytestring-0.10.8.1/docs/Data-ByteString.html
http://hackage.haskell.org/package/postgresql-simple
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 34

To create a instance of the IsString class you need to impliment the fromString function. Example†:

data Foo = A | B | Other String deriving Show

instance IsString Foo where
 fromString "A" = A
 fromString "B" = B
 fromString xs = Other xs

tests :: [Foo]
tests = ["A", "B", "Testing"]

† This example courtesy of Lyndon Maydwell (sordina on GitHub) found here.

Section 7.3: BinaryLiterals
Standard Haskell allows you to write integer literals in decimal (without any prefix), hexadecimal (preceded by 0x or
0X), and octal (preceded by 0o or 0O). The BinaryLiterals extension adds the option of binary (preceded by 0b or
0B).

0b1111 == 15 -- evaluates to: True

Section 7.4: ExistentialQuantification
This is a type system extension that allows types that are existentially quantified, or, in other words, have type
variables that only get instantiated at runtime†.

A value of existential type is similar to an abstract-base-class reference in OO languages: you don't know the exact
type in contains, but you can constrain the class of types.

data S = forall a. Show a => S a

or equivalently, with GADT syntax:

{-# LANGUAGE GADTs #-}
data S where
 S :: Show a => a -> S

Existential types open the door to things like almost-heterogenous containers: as said above, there can actually be
various types in an S value, but all of them can be shown, hence you can also do

instance Show S where
 show (S a) = show a -- we rely on (Show a) from the above

Now we can create a collection of such objects:

ss = [S 5, S "test", S 3.0]

Which also allows us to use the polymorphic behaviour:

mapM_ print ss

Existentials can be very powerful, but note that they are actually not necessary very often in Haskell. In the example

https://gist.github.com/sordina/5714390
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 35

above, all you can actually do with the Show instance is show (duh!) the values, i.e. create a string representation.
The entire S type therefore contains exactly as much information as the string you get when showing it. Therefore,
it is usually better to simply store that string right away, especially since Haskell is lazy and therefore the string will
at first only be an unevaluated thunk anyway.

On the other hand, existentials cause some unique problems. For instance, the way the type information is “hidden”
in an existential. If you pattern-match on an S value, you will have the contained type in scope (more precisely, its
Show instance), but this information can never escape its scope, which therefore becomes a bit of a “secret society”:
the compiler doesn't let anything escape the scope except values whose type is already known from the outside.
This can lead to strange errors like Couldn't match type ‘a0’ with ‘()’ ‘a0’ is untouchable.

†Contrast this with ordinary parametric polymorphism, which is generally resolved at compile time (allowing full
type erasure).

Existential types are different from Rank-N types – these extensions are, roughly speaking, dual to each other: to
actually use values of an existential type, you need a (possibly constrained-) polymorphic function, like show in the
example. A polymorphic function is universally quantified, i.e. it works for any type in a given class, whereas
existential quantification means it works for some particular type which is a priori unknown. If you have a
polymorphic function, that's sufficient, however to pass polymorphic functions as such as arguments, you need {-#
LANGUAGE Rank2Types #-}:

genShowSs :: (∀ x . Show x => x -> String) -> [S] -> [String]
genShowSs f = map (\(S a) -> f a)

Section 7.5: LambdaCase
A syntactic extension that lets you write \case in place of \arg -> case arg of.

Consider the following function definition:

dayOfTheWeek :: Int -> String
dayOfTheWeek 0 = "Sunday"
dayOfTheWeek 1 = "Monday"
dayOfTheWeek 2 = "Tuesday"
dayOfTheWeek 3 = "Wednesday"
dayOfTheWeek 4 = "Thursday"
dayOfTheWeek 5 = "Friday"
dayOfTheWeek 6 = "Saturday"

If you want to avoid repeating the function name, you might write something like:

dayOfTheWeek :: Int -> String
dayOfTheWeek i = case i of
 0 -> "Sunday"
 1 -> "Monday"
 2 -> "Tuesday"
 3 -> "Wednesday"
 4 -> "Thursday"
 5 -> "Friday"
 6 -> "Saturday"

http://stackoverflow.com/questions/28582210/type-inference-with-gadts-a0-is-untouchable
http://stackoverflow.com/questions/28582210/type-inference-with-gadts-a0-is-untouchable
http://stackoverflow.com/questions/28582210/type-inference-with-gadts-a0-is-untouchable
http://stackoverflow.com/questions/28582210/type-inference-with-gadts-a0-is-untouchable
http://stackoverflow.com/questions/28582210/type-inference-with-gadts-a0-is-untouchable
http://stackoverflow.com/questions/28582210/type-inference-with-gadts-a0-is-untouchable
http://stackoverflow.com/questions/28582210/type-inference-with-gadts-a0-is-untouchable
http://stackoverflow.com/questions/28582210/type-inference-with-gadts-a0-is-untouchable
http://stackoverflow.com/questions/28582210/type-inference-with-gadts-a0-is-untouchable
http://stackoverflow.com/questions/28582210/type-inference-with-gadts-a0-is-untouchable
http://stackoverflow.com/questions/28582210/type-inference-with-gadts-a0-is-untouchable
http://stackoverflow.com/questions/28582210/type-inference-with-gadts-a0-is-untouchable
http://stackoverflow.com/questions/28582210/type-inference-with-gadts-a0-is-untouchable
http://stackoverflow.com/questions/28582210/type-inference-with-gadts-a0-is-untouchable
http://stackoverflow.com/questions/28582210/type-inference-with-gadts-a0-is-untouchable
http://stackoverflow.com/questions/28582210/type-inference-with-gadts-a0-is-untouchable
http://stackoverflow.com/questions/28582210/type-inference-with-gadts-a0-is-untouchable
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 36

Using the LambdaCase extension, you can write that as a function expression, without having to name the
argument:

{-# LANGUAGE LambdaCase #-}

dayOfTheWeek :: Int -> String
dayOfTheWeek = \case
 0 -> "Sunday"
 1 -> "Monday"
 2 -> "Tuesday"
 3 -> "Wednesday"
 4 -> "Thursday"
 5 -> "Friday"
 6 -> "Saturday"

Section 7.6: FunctionalDependencies
If you have a multi-parameter type-class with arguments a, b, c, and x, this extension lets you express that the type
x can be uniquely identified from a, b, and c:

class SomeClass a b c x | a b c -> x where ...

When declaring an instance of such class, it will be checked against all other instances to make sure that the
functional dependency holds, that is, no other instance with same a b c but different x exists.

You can specify multiple dependencies in a comma-separated list:

class OtherClass a b c d | a b -> c d, a d -> b where ...

For example in MTL we can see:

class MonadReader r m| m -> r where ...
instance MonadReader r ((->) r) where ...

Now, if you have a value of type MonadReader a ((->) Foo) => a, the compiler can infer that a ~ Foo, since the
second argument completely determines the first, and will simplify the type accordingly.

The SomeClass class can be thought of as a function of the arguments a b c that results in x. Such classes can be
used to do computations in the typesystem.

Section 7.7: FlexibleInstances
Regular instances require:

All instance types must be of the form (T a1 ... an)
where a1 ... an are *distinct type variables*,
and each type variable appears at most once in the instance head.

That means that, for example, while you can create an instance for [a] you can't create an instance for specifically
[Int].; FlexibleInstances relaxes that:

class C a where

-- works out of the box
instance C [a] where

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 37

-- requires FlexibleInstances
instance C [Int] where

Section 7.8: GADTs
Conventional algebraic datatypes are parametric in their type variables. For example, if we define an ADT like

data Expr a = IntLit Int
 | BoolLit Bool
 | If (Expr Bool) (Expr a) (Expr a)

with the hope that this will statically rule out non-well-typed conditionals, this will not behave as expected since the
type of IntLit :: Int -> Expr a is universially quantified: for any choice of a, it produces a value of type Expr a.
In particular, for a ~ Bool, we have IntLit :: Int -> Expr Bool, allowing us to construct something like If
(IntLit 1) e1 e2 which is what the type of the If constructor was trying to rule out.

Generalised Algebraic Data Types allows us to control the resulting type of a data constructor so that they are not
merely parametric. We can rewrite our Expr type as a GADT like this:

data Expr a where
 IntLit :: Int -> Expr Int
 BoolLit :: Bool -> Expr Bool
 If :: Expr Bool -> Expr a -> Expr a -> Expr a

Here, the type of the constructor IntLit is Int -> Expr Int, and so IntLit 1 :: Expr Bool will not typecheck.

Pattern matching on a GADT value causes refinement of the type of the term returned. For example, it is possible to
write an evaluator for Expr a like this:

crazyEval :: Expr a -> a
crazyEval (IntLit x) =
 -- Here we can use `(+)` because x :: Int
 x + 1
crazyEval (BoolLit b) =
 -- Here we can use `not` because b :: Bool
 not b
crazyEval (If b thn els) =
 -- Because b :: Expr Bool, we can use `crazyEval b :: Bool`.
 -- Also, because thn :: Expr a and els :: Expr a, we can pass either to
 -- the recursive call to `crazyEval` and get an a back
 crazyEval $ if crazyEval b then thn else els

Note that we are able to use (+) in the above definitions because when e.g. IntLit x is pattern matched, we also
learn that a ~ Int (and likewise for not and if_then_else_ when a ~ Bool).

Section 7.9: TupleSections
A syntactic extension that allows applying the tuple constructor (which is an operator) in a section way:

(a,b) == (,) a b

-- With TupleSections
(a,b) == (,) a b == (a,) b == (,b) a

N-tuples

It also works for tuples with arity greater than two

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 38

(,2,) 1 3 == (1,2,3)

Mapping

This can be useful in other places where sections are used:

map (,"tag") [1,2,3] == [(1,"tag"), (2, "tag"), (3, "tag")]

The above example without this extension would look like this:

map (\a -> (a, "tag")) [1,2,3]

Section 7.10: OverloadedLists
added in GHC 7.8.

OverloadedLists, similar to OverloadedStrings, allows list literals to be desugared as follows:

[] -- fromListN 0 []
[x] -- fromListN 1 (x : [])
[x ..] -- fromList (enumFrom x)

This comes handy when dealing with types such as Set, Vector and Maps.

['0' .. '9'] :: Set Char
[1 .. 10] :: Vector Int
[("default",0), (k1,v1)] :: Map String Int
['a' .. 'z'] :: Text

IsList class in GHC.Exts is intended to be used with this extension.

IsList is equipped with one type function, Item, and three functions, fromList :: [Item l] -> l, toList :: l
-> [Item l] and fromListN :: Int -> [Item l] -> l where fromListN is optional. Typical implementations are:

instance IsList [a] where
 type Item [a] = a
 fromList = id
 toList = id

instance (Ord a) => IsList (Set a) where
 type Item (Set a) = a
 fromList = Set.fromList
 toList = Set.toList

Examples taken from OverloadedLists – GHC.

Section 7.11: MultiParamTypeClasses
It's a very common extension that allows type classes with multiple type parameters. You can think of MPTC as a
relation between types.

{-# LANGUAGE MultiParamTypeClasses #-}

class Convertable a b where
 convert :: a -> b

instance Convertable Int Float where

https://hackage.haskell.org/package/base-4.9.0.0/docs/GHC-Exts.html#t:IsList
https://ghc.haskell.org/trac/ghc/wiki/OverloadedLists
https://ghc.haskell.org/trac/ghc/wiki/OverloadedLists
https://ghc.haskell.org/trac/ghc/wiki/OverloadedLists
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 39

 convert i = fromIntegral i

The order of parameters matters.

MPTCs can sometimes be replaced with type families.

Section 7.12: UnicodeSyntax
An extension that allows you to use Unicode characters in lieu of certain built-in operators and names.

ASCII Unicode Use(s)
:: ∷ has type
-> → function types, lambdas, case branches, etc.
=> ⇒ class constraints
forall ∀ explicit polymorphism
<- ← do notation
* ★ the type (or kind) of types (e.g., Int :: ★)
>- � proc notation for Arrows
-< � proc notation for Arrows
>>- � proc notation for Arrows
-<< � proc notation for Arrows

For example:

runST :: (forall s. ST s a) -> a

would become

runST ∷ (∀ s. ST s a) → a

Note that the * vs. ★ example is slightly different: since * isn't reserved, ★ also works the same way as * for
multiplication, or any other function named (*), and vice-versa. For example:

ghci> 2 ★ 3
6
ghci> let (*) = (+) in 2 ★ 3
5
ghci> let (★) = (-) in 2 * 3
-1

Section 7.13: PatternSynonyms
Pattern synonyms are abstractions of patterns similar to how functions are abstractions of expressions.

For this example, let's look at the interface Data.Sequence exposes, and let's see how it can be improved with
pattern synonyms. The Seq type is a data type that, internally, uses a complicated representation to achieve good
asymptotic complexity for various operations, most notably both O(1) (un)consing and (un)snocing.

But this representation is unwieldy and some of its invariants cannot be expressed in Haskell's type system.
Because of this, the Seq type is exposed to users as an abstract type, along with invariant-preserving accessor and
constructor functions, among them:

https://downloads.haskell.org/%7Eghc/8.0.1/docs/html/users_guide/glasgow_exts.html#arrow-notation
https://downloads.haskell.org/%7Eghc/8.0.1/docs/html/users_guide/glasgow_exts.html#arrow-notation
https://downloads.haskell.org/%7Eghc/latest/docs/html/libraries/base-4.9.0.0/Control-Arrow.html
https://downloads.haskell.org/%7Eghc/8.0.1/docs/html/users_guide/glasgow_exts.html#arrow-notation
https://downloads.haskell.org/%7Eghc/8.0.1/docs/html/users_guide/glasgow_exts.html#arrow-notation
https://downloads.haskell.org/%7Eghc/latest/docs/html/libraries/base-4.9.0.0/Control-Arrow.html
https://downloads.haskell.org/%7Eghc/8.0.1/docs/html/users_guide/glasgow_exts.html#arrow-notation
https://downloads.haskell.org/%7Eghc/8.0.1/docs/html/users_guide/glasgow_exts.html#arrow-notation
https://downloads.haskell.org/%7Eghc/latest/docs/html/libraries/base-4.9.0.0/Control-Arrow.html
https://downloads.haskell.org/%7Eghc/8.0.1/docs/html/users_guide/glasgow_exts.html#arrow-notation
https://downloads.haskell.org/%7Eghc/8.0.1/docs/html/users_guide/glasgow_exts.html#arrow-notation
https://downloads.haskell.org/%7Eghc/latest/docs/html/libraries/base-4.9.0.0/Control-Arrow.html
https://ghc.haskell.org/trac/ghc/wiki/PatternSynonyms
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Sequence.html
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Sequence.html#t:Seq
http://staff.city.ac.uk/%7Eross/papers/FingerTree.html
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 40

empty :: Seq a

(<|) :: a -> Seq a -> Seq a
data ViewL a = EmptyL | a :< (Seq a)
viewl :: Seq a -> ViewL a

(|>) :: Seq a -> a -> Seq a
data ViewR a = EmptyR | (Seq a) :> a
viewr :: Seq a -> ViewR a

But using this interface can be a bit cumbersome:

uncons :: Seq a -> Maybe (a, Seq a)
uncons xs = case viewl xs of
 x :< xs' -> Just (x, xs')
 EmptyL -> Nothing

We can use view patterns to clean it up somewhat:

{-# LANGUAGE ViewPatterns #-}

uncons :: Seq a -> Maybe (a, Seq a)
uncons (viewl -> x :< xs) = Just (x, xs)
uncons _ = Nothing

Using the PatternSynonyms language extension, we can give an even nicer interface by allowing pattern matching
to pretend that we have a cons- or a snoc-list:

{-# LANGUAGE PatternSynonyms #-}
import Data.Sequence (Seq)
import qualified Data.Sequence as Seq

pattern Empty :: Seq a
pattern Empty <- (Seq.viewl -> Seq.EmptyL)

pattern (:<) :: a -> Seq a -> Seq a
pattern x :< xs <- (Seq.viewl -> x Seq.:< xs)

pattern (:>) :: Seq a -> a -> Seq a
pattern xs :> x <- (Seq.viewr -> xs Seq.:> x)

This allows us to write uncons in a very natural style:

uncons :: Seq a -> Maybe (a, Seq a)
uncons (x :< xs) = Just (x, xs)
uncons _ = Nothing

Section 7.14: ScopedTypeVariables
ScopedTypeVariables let you refer to universally quantified types inside of a declaration. To be more explicit:

import Data.Monoid

foo :: forall a b c. (Monoid b, Monoid c) => (a, b, c) -> (b, c) -> (a, b, c)
foo (a, b, c) (b', c') = (a :: a, b'', c'')
 where (b'', c'') = (b <> b', c <> c') :: (b, c)

https://ghc.haskell.org/trac/ghc/wiki/ViewPatterns
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 41

The important thing is that we can use a, b and c to instruct the compiler in subexpressions of the declaration (the
tuple in the where clause and the first a in the final result). In practice, ScopedTypeVariables assist in writing
complex functions as a sum of parts, allowing the programmer to add type signatures to intermediate values that
don't have concrete types.

Section 7.15: RecordWildCards
See RecordWildCards

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 42

Chapter 8: Free Monads
Section 8.1: Free monads split monadic computations into
data structures and interpreters
For instance, a computation involving commands to read and write from the prompt:

First we describe the "commands" of our computation as a Functor data type

{-# LANGUAGE DeriveFunctor #-}

data TeletypeF next
 = PrintLine String next
 | ReadLine (String -> next)
 deriving Functor

Then we use Free to create the "Free Monad over TeletypeF" and build some basic operations.

import Control.Monad.Free (Free, liftF, iterM)

type Teletype = Free TeletypeF

printLine :: String -> Teletype ()
printLine str = liftF (PrintLine str ())

readLine :: Teletype String
readLine = liftF (ReadLine id)

Since Free f is a Monad whenever f is a Functor, we can use the standard Monad combinators (including do
notation) to build Teletype computations.

import Control.Monad -- we can use the standard combinators

echo :: Teletype ()
echo = readLine >>= printLine

mockingbird :: Teletype a
mockingbird = forever echo

Finally, we write an "interpreter" turning Teletype a values into something we know how to work with like IO a

interpretTeletype :: Teletype a -> IO a
interpretTeletype = foldFree run where
 run :: TeletypeF a -> IO a
 run (PrintLine str x) = putStrLn *> return x
 run (ReadLine f) = fmap f getLine

Which we can use to "run" the Teletype a computation in IO

> interpretTeletype mockingbird
hello
hello
goodbye
goodbye
this will go on forever
this will go on forever

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 43

Section 8.2: The Freer monad
There's an alternative formulation of the free monad called the Freer (or Prompt, or Operational) monad. The Freer
monad doesn't require a Functor instance for its underlying instruction set, and it has a more recognisably list-like
structure than the standard free monad.

The Freer monad represents programs as a sequence of atomic instructions belonging to the instruction set i :: *
-> *. Each instruction uses its parameter to declare its return type. For example, the set of base instructions for the
State monad are as follows:

data StateI s a where
 Get :: StateI s s -- the Get instruction returns a value of type 's'
 Put :: s -> StateI s () -- the Put instruction contains an 's' as an argument and returns ()

Sequencing these instructions takes place with the :>>= constructor. :>>= takes a single instruction returning an a
and prepends it to the rest of the program, piping its return value into the continuation. In other words, given an
instruction returning an a, and a function to turn an a into a program returning a b, :>>= will produce a program
returning a b.

data Freer i a where
 Return :: a -> Freer i a
 (:>>=) :: i a -> (a -> Freer i b) -> Freer i b

Note that a is existentially quantified in the :>>= constructor. The only way for an interpreter to learn what a is is by
pattern matching on the GADT i.

Aside: The co-Yoneda lemma tells us that Freer is isomorphic to Free. Recall the definition of the
CoYoneda functor:

data CoYoneda i b where
 CoYoneda :: i a -> (a -> b) -> CoYoneda i b

Freer i is equivalent to Free (CoYoneda i). If you take Free's constructors and set f ~ CoYoneda i, you
get:

Pure :: a -> Free (CoYoneda i) a
Free :: CoYoneda i (Free (CoYoneda i) b) -> Free (CoYonda i) b ~
 i a -> (a -> Free (CoYoneda i) b) -> Free (CoYoneda i) b

from which we can recover Freer i's constructors by just setting Freer i ~ Free (CoYoneda i).

Because CoYoneda i is a Functor for any i, Freer is a Monad for any i, even if i isn't a Functor.

instance Monad (Freer i) where
 return = Return
 Return x >>= f = f x
 (i :>>= g) >>= f = i :>>= fmap (>>= f) g -- using `(->) r`'s instance of Functor, so fmap = (.)

Interpreters can be built for Freer by mapping instructions to some handler monad.

foldFreer :: Monad m => (forall x. i x -> m x) -> Freer i a -> m a
foldFreer eta (Return x) = return x
foldFreer eta (i :>>= f) = eta i >>= (foldFreer eta . f)

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 44

For example, we can interpret the Freer (StateI s) monad using the regular State s monad as a handler:

runFreerState :: Freer (StateI s) a -> s -> (a, s)
runFreerState = State.runState . foldFreer toState
 where toState :: StateI s a -> State s a
 toState Get = State.get
 toState (Put x) = State.put x

Section 8.3: How do foldFree and iterM work?
There are some functions to help tear down Free computations by interpreting them into another monad m: iterM
:: (Functor f, Monad m) => (f (m a) -> m a) -> (Free f a -> m a) and foldFree :: Monad m => (forall
x. f x -> m x) -> (Free f a -> m a). What are they doing?

First let's see what it would take to tear down an interpret a Teletype a function into IO manually. We can see Free
f a as being defined

data Free f a
 = Pure a
 | Free (f (Free f a))

The Pure case is easy:

interpretTeletype :: Teletype a -> IO a
interpretTeletype (Pure x) = return x
interpretTeletype (Free teletypeF) = _

Now, how to interpret a Teletype computation that was built with the Free constructor? We'd like to arrive at a
value of type IO a by examining teletypeF :: TeletypeF (Teletype a). To start with, we'll write a function runIO
:: TeletypeF a -> IO a which maps a single layer of the free monad to an IO action:

runIO :: TeletypeF a -> IO a
runIO (PrintLine msg x) = putStrLn msg *> return x
runIO (ReadLine k) = fmap k getLine

Now we can use runIO to fill in the rest of interpretTeletype. Recall that teletypeF :: TeletypeF (Teletype a)
is a layer of the TeletypeF functor which contains the rest of the Free computation. We'll use runIO to interpret the
outermost layer (so we have runIO teletypeF :: IO (Teletype a)) and then use the IO monad's >>= combinator
to interpret the returned Teletype a.

interpretTeletype :: Teletype a -> IO a
interpretTeletype (Pure x) = return x
interpretTeletype (Free teletypeF) = runIO teletypeF >>= interpretTeletype

The definition of foldFree is just that of interpretTeletype, except that the runIO function has been factored out.
As a result, foldFree works independently of any particular base functor and of any target monad.

foldFree :: Monad m => (forall x. f x -> m x) -> Free f a -> m a
foldFree eta (Pure x) = return x
foldFree eta (Free fa) = eta fa >>= foldFree eta

foldFree has a rank-2 type: eta is a natural transformation. We could have given foldFree a type of Monad m => (f
(Free f a) -> m (Free f a)) -> Free f a -> m a, but that gives eta the liberty of inspecting the Free
computation inside the f layer. Giving foldFree this more restrictive type ensures that eta can only process a single
layer at a time.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 45

iterM does give the folding function the ability to examine the subcomputation. The (monadic) result of the
previous iteration is available to the next, inside f's parameter. iterM is analogous to a paramorphism whereas
foldFree is like a catamorphism.

iterM :: (Monad m, Functor f) => (f (m a) -> m a) -> Free f a -> m a
iterM phi (Pure x) = return x
iterM phi (Free fa) = phi (fmap (iterM phi) fa)

Section 8.4: Free Monads are like fixed points
Compare the definition of Free to that of Fix:

data Free f a = Return a
 | Free (f (Free f a))

newtype Fix f = Fix { unFix :: f (Fix f) }

In particular, compare the type of the Free constructor with the type of the Fix constructor. Free layers up a
functor just like Fix, except that Free has an additional Return a case.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 46

Chapter 9: Type Classes
Typeclasses in Haskell are a means of defining the behaviour associated with a type separately from that type's
definition. Whereas, say, in Java, you'd define the behaviour as part of the type's definition -- i.e. in an interface,
abstract class or concrete class -- Haskell keeps these two things separate.

There are a number of typeclasses already defined in Haskell's base package. The relationship between these is
illustrated in the Remarks section below.

Section 9.1: Eq
All basic datatypes (like Int, String, Eq a => [a]) from Prelude except for functions and IO have instances of Eq. If
a type instantiates Eq it means that we know how to compare two values for value or structural equality.

> 3 == 2
False
> 3 == 3
True

Required methods

(==) :: Eq a => a -> a -> Boolean or (/=) :: Eq a => a -> a -> Boolean (if only one is implemented,
the other defaults to the negation of the defined one)

Defines

(==) :: Eq a => a -> a -> Boolean

(/=) :: Eq a => a -> a -> Boolean

Direct superclasses

None

Notable subclasses

Ord

Section 9.2: Monoid
Types instantiating Monoid include lists, numbers, and functions with Monoid return values, among others. To
instantiate Monoid a type must support an associative binary operation (mappend or (<>)) which combines its values,
and have a special "zero" value (mempty) such that combining a value with it does not change that value:

mempty <> x == x
x <> mempty == x

x <> (y <> z) == (x <> y) <> z

Intuitively, Monoid types are "list-like" in that they support appending values together. Alternatively, Monoid types
can be thought of as sequences of values for which we care about the order but not the grouping. For instance, a
binary tree is a Monoid, but using the Monoid operations we cannot witness its branching structure, only a traversal
of its values (see Foldable and Traversable).

Required methods

mempty :: Monoid m => m

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 47

mappend :: Monoid m => m -> m -> m

Direct superclasses

None

Section 9.3: Ord
Types instantiating Ord include, e.g., Int, String, and [a] (for types a where there's an Ord a instance). If a type
instantiates Ord it means that we know a “natural” ordering of values of that type. Note, there are often many
possible choices of the “natural” ordering of a type and Ord forces us to favor one.

Ord provides the standard (<=), (<), (>), (>=) operators but interestingly defines them all using a custom algebraic
data type

data Ordering = LT | EQ | GT

compare :: Ord a => a -> a -> Ordering

Required methods

compare :: Ord a => a -> a -> Ordering or (<=) :: Ord a => a -> a -> Boolean (the standard’s
default compare method uses (<=) in its implementation)

Defines

compare :: Ord a => a -> a -> Ordering

(<=) :: Ord a => a -> a -> Boolean

(<) :: Ord a => a -> a -> Boolean

(>=) :: Ord a => a -> a -> Boolean

(>) :: Ord a => a -> a -> Boolean

min :: Ord a => a -> a -> a

max :: Ord a => a -> a -> a

Direct superclasses

Eq

Section 9.4: Num
The most general class for number types, more precisely for rings, i.e. numbers that can be added and subtracted
and multiplied in the usual sense, but not necessarily divided.

This class contains both integral types (Int, Integer, Word32 etc.) and fractional types (Double, Rational, also
complex numbers etc.). In case of finite types, the semantics are generally understood as modular arithmetic, i.e.
with over- and underflow†.

Note that the rules for the numerical classes are much less strictly obeyed than the monad or monoid laws, or
those for equality comparison. In particular, floating-point numbers generally obey laws only in a approximate
sense.

The methods

fromInteger :: Num a => Integer -> a. convert an integer to the general number type (wrapping around
the range, if necessary). Haskell number literals can be understood as a monomorphic Integer literal with
the general conversion around it, so you can use the literal 5 in both an Int context and a Complex Double

https://en.wikipedia.org/wiki/Ring_(mathematics)
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 48

setting.

(+) :: Num a => a -> a -> a. Standard addition, generally understood as associative and commutative,
i.e.,

 a + (b + c) ≡ (a + b) + c
 a + b ≡ b + a

(-) :: Num a => a -> a -> a. Subtraction, which is the inverse of addition:

 (a - b) + b ≡ (a + b) - b ≡ a

(*) :: Num a => a -> a -> a. Multiplication, an associative operation that's distributive over addition:

 a * (b * c) ≡ (a * b) * c
 a * (b + c) ≡ a * b + a * c

for the most common instances, multiplication is also commutative, but this is definitely not a requirement.

negate :: Num a => a -> a. The full name of the unary negation operator. -1 is syntactic sugar for negate
1.

 -a ≡ negate a ≡ 0 - a

abs :: Num a => a -> a. The absolute-value function always gives a non-negative result of the same
magnitude

 abs (-a) ≡ abs a
 abs (abs a) ≡ abs a

abs a ≡ 0 should only happen if a ≡ 0.

For real types it's clear what non-negative means: you always have abs a >= 0. Complex etc. types don't
have a well-defined ordering, however the result of abs should always lie in the real subset‡ (i.e. give a
number that could also be written as a single number literal without negation).

signum :: Num a => a -> a. The sign function, according to the name, yields only -1 or 1, depending on the
sign of the argument. Actually, that's only true for nonzero real numbers; in general signum is better
understood as the normalising function:

 abs (signum a) ≡ 1 -- unless a≡0
 signum a * abs a ≡ a -- This is required to be true for all Num instances

Note that section 6.4.4 of the Haskell 2010 Report explicitly requires this last equality to hold for any valid Num
instance.

Some libraries, notably linear and hmatrix, have a much laxer understanding of what the Num class is for: they treat
it just as a way to overload the arithmetic operators. While this is pretty straightforward for + and -, it already
becomes troublesome with * and more so with the other methods. For instance, should * mean matrix multiplication
or element-wise multiplication?

http://hackage.haskell.org/package/base-4.9.0.0/docs/Prelude.html#t:Real
https://www.haskell.org/onlinereport/haskell2010/haskellch6.html#x13-1390006.4.4
http://hackage.haskell.org/package/linear
http://hackage.haskell.org/package/hmatrix
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 49

It is arguably a bad idea to define such non-number instances; please consider dedicated classes such as
VectorSpace.

† In particular, the “negatives” of unsigned types are wrapped around to large positive, e.g. (-4 :: Word32) ==
4294967292.

‡ This is widely not fulfilled: vector types do not have a real subset. The controversial Num-instances for such types
generally define abs and signum element-wise, which mathematically speaking doesn't really make sense.

Section 9.5: Maybe and the Functor Class
In Haskell, data types can have arguments just like functions. Take the Maybe type for example.

Maybe is a very useful type which allows us to represent the idea of failure, or the possiblity thereof. In other words,
if there is a possibility that a computation will fail, we use the Maybe type there. Maybe acts kind of like a wrapper for
other types, giving them additional functionality.

Its actual declaration is fairly simple.

Maybe a = Just a | Nothing

What this tells is that a Maybe comes in two forms, a Just, which represents success, and a Nothing, which
represents failure. Just takes one argument which determines the type of the Maybe, and Nothing takes none. For
example, the value Just "foo" will have type Maybe String, which is a string type wrapped with the additional
Maybe functionality. The value Nothing has type Maybe a where a can be any type.

This idea of wrapping types to give them additional functionality is a very useful one, and is applicable to more than
just Maybe. Other examples include the Either, IO and list types, each providing different functionality. However,
there are some actions and abilities which are common to all of these wrapper types. The most notable of these is
the ability to modify the encapsulated value.

It is common to think of these kinds of types as boxes which can have values placed in them. Different boxes hold
different values and do different things, but none are useful without being able to access the contents within.

To encapsulate this idea, Haskell comes with a standard typeclass, named Functor. It is defined as follows.

class Functor f where
 fmap :: (a -> b) -> f a -> f b

As can be seen, the class has a single function, fmap, of two arguments. The first argument is a function from one
type, a, to another, b. The second argument is a functor (wrapper type) containing a value of type a. It returns a
functor (wrapper type) containing a value of type b.

In simple terms, fmap takes a function and applies to the value inside of a functor. It is the only function necessary
for a type to be a member of the Functor class, but it is extremely useful. Functions operating on functors that have
more specific applications can be found in the Applicative and Monad typeclasses.

Section 9.6: Type class inheritance: Ord type class
Haskell supports a notion of class extension. For example, the class Ord inherits all of the operations in Eq, but in
addition has a compare function that returns an Ordering between values. Ord may also contain the common order
comparison operators, as well as a min method and a max method.

The => notation has the same meaning as it does in a function signature and requires type a to implement Eq, in

http://hackage.haskell.org/package/vector-space-0.10.2/docs/Data-VectorSpace.html
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 50

order to implement Ord.

data Ordering = EQ | LT | GT

class Eq a => Ord a where
 compare :: Ord a => a -> a -> Ordering
 (<) :: Ord a => a -> a -> Bool
 (<=) :: Ord a => a -> a -> Bool
 (>) :: Ord a => a -> a -> Bool
 (>=) :: Ord a => a -> a -> Bool
 min :: Ord a => a -> a -> a
 max :: Ord a => a -> a -> a

All of the methods following compare can be derived from it in a number of ways:

x < y = compare x y == LT
x <= y = x < y || x == y -- Note the use of (==) inherited from Eq
x > y = not (x <= y)
x >= y = not (x < y)

min x y = case compare x y of
 EQ -> x
 LT -> x
 GT -> y

max x y = case compare x y of
 EQ -> x
 LT -> y
 GT -> x

Type classes that themselves extend Ord must implement at least either the compare method or the (<=) method
themselves, which builds up the directed inheritance lattice.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 51

Chapter 10: IO
Section 10.1: Getting the 'a' "out of" 'IO a'
A common question is "I have a value of IO a, but I want to do something to that a value: how do I get access to it?"
How can one operate on data that comes from the outside world (for example, incrementing a number typed by
the user)?

The point is that if you use a pure function on data obtained impurely, then the result is still impure. It depends on
what the user did! A value of type IO a stands for a "side-effecting computation resulting in a value of type a" which
can only be run by (a) composing it into main and (b) compiling and executing your program. For that reason, there
is no way within pure Haskell world to "get the a out".

Instead, we want to build a new computation, a new IO value, which makes use of the a value at runtime. This is
another way of composing IO values and so again we can use do-notation:

-- assuming
myComputation :: IO Int

getMessage :: Int -> String
getMessage int = "My computation resulted in: " ++ show int

newComputation :: IO ()
newComputation = do
 int <- myComputation -- we "bind" the result of myComputation to a name, 'int'
 putStrLn $ getMessage int -- 'int' holds a value of type Int

Here we're using a pure function (getMessage) to turn an Int into a String, but we're using do notation to make it
be applied to the result of an IO computation myComputation when (after) that computation runs. The result is a
bigger IO computation, newComputation. This technique of using pure functions in an impure context is called lifting.

Section 10.2: IO defines your program's `main` action
To make a Haskell program executable you must provide a file with a main function of type IO ()

main :: IO ()
main = putStrLn "Hello world!"

When Haskell is compiled it examines the IO data here and turns it into a executable. When we run this program it
will print Hello world!.

If you have values of type IO a other than main they won't do anything.

other :: IO ()
other = putStrLn "I won't get printed"

main :: IO ()
main = putStrLn "Hello world!"

Compiling this program and running it will have the same effect as the last example. The code in other is ignored.

In order to make the code in other have runtime effects you have to compose it into main. No IO values not
eventually composed into main will have any runtime effect. To compose two IO values sequentially you can use do-
notation:

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 52

other :: IO ()
other = putStrLn "I will get printed... but only at the point where I'm composed into main"

main :: IO ()
main = do
 putStrLn "Hello world!"
 other

When you compile and run this program it outputs

Hello world!
I will get printed... but only at the point where I'm composed into main

Note that the order of operations is described by how other was composed into main and not the definition order.

Section 10.3: Checking for end-of-file conditions
A bit counter-intuitive to the way most other languages' standard I/O libraries do it, Haskell's isEOF does not
require you to perform a read operation before checking for an EOF condition; the runtime will do it for you.

import System.IO(isEOF)

eofTest :: Int -> IO ()
eofTest line = do
 end <- isEOF
 if end then
 putStrLn $ "End-of-file reached at line " ++ show line ++ "."
 else do
 getLine
 eofTest $ line + 1

main :: IO ()
main =
 eofTest 1

Input:

Line #1.
Line #2.
Line #3.

Output:

End-of-file reached at line 4.

Section 10.4: Reading all contents of standard input into a
string
main = do
 input <- getContents
 putStr input

Input:

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 53

This is an example sentence.
And this one is, too!

Output:

This is an example sentence.
And this one is, too!

Note: This program will actually print parts of the output before all of the input has been fully read in. This means
that, if, for example, you use getContents over a 50MiB file, Haskell's lazy evaluation and garbage collector will
ensure that only the parts of the file that are currently needed (read: indispensable for further execution) will be
loaded into memory. Thus, the 50MiB file won't be loaded into memory at once.

Section 10.5: Role and Purpose of IO
Haskell is a pure language, meaning that expressions cannot have side effects. A side effect is anything that the
expression or function does other than produce a value, for example, modify a global counter or print to standard
output.

In Haskell, side-effectful computations (specifically, those which can have an effect on the real world) are modelled
using IO. Strictly speaking, IO is a type constructor, taking a type and producing a type. For example, IO Int is the
type of an I/O computation producing an Int value. The IO type is abstract, and the interface provided for IO
ensures that certain illegal values (that is, functions with non-sensical types) cannot exist, by ensuring that all built-
in functions which perform IO have a return type enclosed in IO.

When a Haskell program is run, the computation represented by the Haskell value named main, whose type can be
IO x for any type x, is executed.

Manipulating IO values

There are many functions in the standard library providing typical IO actions that a general purpose programming
language should perform, such as reading and writing to file handles. General IO actions are created and combined
primarily with two functions:

 (>>=) :: IO a -> (a -> IO b) -> IO b

This function (typically called bind) takes an IO action and a function which returns an IO action, and produces the
IO action which is the result of applying the function to the value produced by the first IO action.

 return :: a -> IO a

This function takes any value (i.e., a pure value) and returns the IO computation which does no IO and produces the
given value. In other words, it is a no-op I/O action.

There are additional general functions which are often used, but all can be written in terms of the two above. For
example, (>>) :: IO a -> IO b -> IO b is similar to (>>=) but the result of the first action is ignored.

A simple program greeting the user using these functions:

 main :: IO ()
 main =
 putStrLn "What is your name?" >>

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 54

 getLine >>= \name ->
 putStrLn ("Hello " ++ name ++ "!")

This program also uses putStrLn :: String -> IO () and getLine :: IO String.

Note: the types of certain functions above are actually more general than those types given (namely >>=, >> and
return).

IO semantics

The IO type in Haskell has very similar semantics to that of imperative programming languages. For example, when
one writes s1 ; s2 in an imperative language to indicate executing statement s1, then statement s2, one can write
s1 >> s2 to model the same thing in Haskell.

However, the semantics of IO diverge slightly of what would be expected coming from an imperative background.
The return function does not interrupt control flow - it has no effect on the program if another IO action is run in
sequence. For example, return () >> putStrLn "boom" correctly prints "boom" to standard output.

The formal semantics of IO can given in terms of simple equalities involving the functions in the previous section:

 return x >>= f ≡ f x, ∀ f x
 y >>= return ≡ return y, ∀ y
 (m >>= f) >>= g ≡ m >>= (\x -> (f x >>= g)), ∀ m f g

These laws are typically referred to as left identity, right identity, and composition, respectively. They can be stated
more naturally in terms of the function

 (>=>) :: (a -> IO b) -> (b -> IO c) -> a -> IO c
 (f >=> g) x = (f x) >>= g

as follows:

 return >=> f ≡ f, ∀ f
 f >=> return ≡ f, ∀ f
 (f >=> g) >=> h ≡ f >=> (g >=> h), ∀ f g h

Lazy IO

Functions performing I/O computations are typically strict, meaning that all preceding actions in a sequence of
actions must be completed before the next action is begun. Typically this is useful and expected behaviour -
putStrLn "X" >> putStrLn "Y" should print "XY". However, certain library functions perform I/O lazily, meaning
that the I/O actions required to produce the value are only performed when the value is actually consumed.
Examples of such functions are getContents and readFile. Lazy I/O can drastically reduce the performance of a
Haskell program, so when using library functions, care should be taken to note which functions are lazy.

IO and do notation

Haskell provides a simpler method of combining different IO values into larger IO values. This special syntax is
known as do notation* and is simply syntactic sugar for usages of the >>=, >> and return functions.

The program in the previous section can be written in two different ways using do notation, the first being layout-
sensitive and the second being layout insensitive:

 main = do

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 55

 putStrLn "What is your name?"
 name <- getLine
 putStrLn ("Hello " ++ name ++ "!")

 main = do {
 putStrLn "What is your name?" ;
 name <- getLine ;
 putStrLn ("Hello " ++ name ++ "!")
 }

All three programs are exactly equivalent.

*Note that do notation is also applicable to a broader class of type constructors called monads.

Section 10.6: Writing to stdout
Per the Haskell 2010 Language Specification the following are standard IO functions available in Prelude, so no
imports are required to use them.

putChar :: Char -> IO () - writes a char to stdout
Prelude> putChar 'a'
aPrelude> -- Note, no new line

putStr :: String -> IO () - writes a String to stdout
Prelude> putStr "This is a string!"
This is a string!Prelude> -- Note, no new line

putStrLn :: String -> IO () - writes a String to stdout and adds a new line
Prelude> putStrLn "Hi there, this is another String!"
Hi there, this is another String!

print :: Show a => a -> IO () - writes a an instance of Show to stdout
Prelude> print "hi"
"hi"
Prelude> print 1
1
Prelude> print 'a'
'a'
Prelude> print (Just 'a') -- Maybe is an instance of the `Show` type class
Just 'a'
Prelude> print Nothing
Nothing

Recall that you can instantiate Show for your own types using deriving:

-- In ex.hs
data Person = Person { name :: String } deriving Show
main = print (Person "Alex") -- Person is an instance of `Show`, thanks to `deriving`

Loading & running in GHCi:

Prelude> :load ex.hs
[1 of 1] Compiling ex (ex.hs, interpreted)
Ok, modules loaded: ex.
*Main> main -- from ex.hs
Person {name = "Alex"}
*Main>

https://www.haskell.org/onlinereport/haskell2010/haskellch7.html#x14-1430007.1
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 56

Section 10.7: Reading words from an entire file
In Haskell, it often makes sense not to bother with file handles at all, but simply read or write an entire file straight
from disk to memory†, and do all the partitioning/processing of the text with the pure string data structure. This
avoids mixing IO and program logic, which can greatly help avoiding bugs.

-- | The interesting part of the program, which actually processes data
-- but doesn't do any IO!
reverseWords :: String -> [String]
reverseWords = reverse . words

-- | A simple wrapper that only fetches the data from disk, lets
-- 'reverseWords' do its job, and puts the result to stdout.
main :: IO ()
main = do
 content <- readFile "loremipsum.txt"
 mapM_ putStrLn $ reverseWords content

If loremipsum.txt contains

Lorem ipsum dolor sit amet,
consectetur adipiscing elit

then the program will output

elit
adipiscing
consectetur
amet,
sit
dolor
ipsum
Lorem

Here, mapM_ went through the list of all words in the file, and printed each of them to a separate line with putStrLn.

†If you think this is wasteful on memory, you have a point. Actually, Haskell's laziness can often avoid that the entire
file needs to reside in memory simultaneously... but beware, this kind of lazy IO causes its own set of problems. For
performance-critical applications, it often makes sense to enforce the entire file to be read at once, strictly; you can
do this with the Data.Text version of readFile.

Section 10.8: Reading a line from standard input
main = do
 line <- getLine
 putStrLn line

Input:

This is an example.

Output:

This is an example.

http://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Monad.html#v:mapM_
http://hackage.haskell.org/package/base-4.9.0.0/docs/Prelude.html#v:putStrLn
http://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text-IO.html#v:readFile
http://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text-IO.html#v:readFile
http://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text-IO.html#v:readFile
http://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text-IO.html#v:readFile
http://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text-IO.html#v:readFile
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 57

Section 10.9: Reading from `stdin`
As-per the Haskell 2010 Language Specification, the following are standard IO functions available in Prelude, so no
imports are required to use them.

getChar :: IO Char - read a Char from stdin
-- MyChar.hs
main = do
 myChar <- getChar
 print myChar

-- In your shell

runhaskell MyChar.hs
a -- you enter a and press enter
'a' -- the program prints 'a'

getLine :: IO String - read a String from stdin, sans new line character
Prelude> getLine
Hello there! -- user enters some text and presses enter
"Hello there!"

read :: Read a => String -> a - convert a String to a value
Prelude> read "1" :: Int
1
Prelude> read "1" :: Float
1.0
Prelude> read "True" :: Bool
True

Other, less common functions are:

getContents :: IO String - returns all user input as a single string, which is read lazily as it is needed
interact :: (String -> String) -> IO () - takes a function of type String->String as its argument. The
entire input from the standard input device is passed to this function as its argument

Section 10.10: Parsing and constructing an object from
standard input
readFloat :: IO Float
readFloat =
 fmap read getLine

main :: IO ()
main = do
 putStr "Type the first number: "
 first <- readFloat

 putStr "Type the second number: "
 second <- readFloat

 putStrLn $ show first ++ " + " ++ show second ++ " = " ++ show (first + second)

Input:

Type the first number: 9.5
Type the second number: -2.02

https://www.haskell.org/onlinereport/haskell2010/haskellch7.html#x14-1430007.1
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 58

Output:

9.5 + -2.02 = 7.48

Section 10.11: Reading from file handles
Like in several other parts of the I/O library, functions that implicitly use a standard stream have a counterpart in
System.IO that performs the same job, but with an extra parameter at the left, of type Handle, that represents the
stream being handled. For instance, getLine :: IO String has a counterpart hGetLine :: Handle -> IO String.

import System.IO(Handle, FilePath, IOMode(ReadMode),
 openFile, hGetLine, hPutStr, hClose, hIsEOF, stderr)

import Control.Monad(when)

dumpFile :: Handle -> FilePath -> Integer -> IO ()

dumpFile handle filename lineNumber = do -- show file contents line by line
 end <- hIsEOF handle
 when (not end) $ do
 line <- hGetLine handle
 putStrLn $ filename ++ ":" ++ show lineNumber ++ ": " ++ line
 dumpFile handle filename $ lineNumber + 1

main :: IO ()

main = do
 hPutStr stderr "Type a filename: "
 filename <- getLine
 handle <- openFile filename ReadMode
 dumpFile handle filename 1
 hClose handle

Contents of file example.txt:

This is an example.
Hello, world!
This is another example.

Input:

Type a filename: example.txt

Output:

example.txt:1: This is an example.
example.txt:2: Hello, world!
example.txt:3: This is another example

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 59

Chapter 11: Record Syntax
Section 11.1: Basic Syntax
Records are an extension of sum algebraic data type that allow fields to be named:

data StandardType = StandardType String Int Bool --standard way to create a sum type

data RecordType = RecordType { -- the same sum type with record syntax
 aString :: String
 , aNumber :: Int
 , isTrue :: Bool
 }

The field names can then be used to get the named field out of the record

> let r = RecordType {aString = "Foobar", aNumber= 42, isTrue = True}
> :t r
 r :: RecordType
> :t aString
 aString :: RecordType -> String
> aString r
 "Foobar"

Records can be pattern matched against

case r of
 RecordType{aNumber = x, aString=str} -> ... -- x = 42, str = "Foobar"

Notice that not all fields need be named

Records are created by naming their fields, but can also be created as ordinary sum types (often useful when the
number of fields is small and not likely to change)

r = RecordType {aString = "Foobar", aNumber= 42, isTrue = True}
r' = RecordType "Foobar" 42 True

If a record is created without a named field, the compiler will issue a warning, and the resulting value will be
undefined.

> let r = RecordType {aString = "Foobar", aNumber= 42}
 <interactive>:1:9: Warning:
 Fields of RecordType not initialized: isTrue
> isTrue r
 Error 'undefined'

A field of a record can be updated by setting its value. Unmentioned fields do not change.

> let r = RecordType {aString = "Foobar", aNumber= 42, isTrue = True}
> let r' = r{aNumber=117}
 -- r'{aString = "Foobar", aNumber= 117, isTrue = True}

It is often useful to create lenses for complicated record types.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 60

Section 11.2: Defining a data type with field labels
It is possible to define a data type with field labels.

data Person = Person { age :: Int, name :: String }

This definition differs from a normal record definition as it also defines *record accessors which can be used to
access parts of a data type.

In this example, two record accessors are defined, age and name, which allow us to access the age and name fields
respectively.

age :: Person -> Int
name :: Person -> String

Record accessors are just Haskell functions which are automatically generated by the compiler. As such, they are
used like ordinary Haskell functions.

By naming fields, we can also use the field labels in a number of other contexts in order to make our code more
readable.

Pattern Matching
lowerCaseName :: Person -> String
lowerCaseName (Person { name = x }) = map toLower x

We can bind the value located at the position of the relevant field label whilst pattern matching to a new value (in
this case x) which can be used on the RHS of a definition.

Pattern Matching with NamedFieldPuns
lowerCaseName :: Person -> String
lowerCaseName (Person { name }) = map toLower name

The NamedFieldPuns extension instead allows us to just specify the field label we want to match upon, this name is
then shadowed on the RHS of a definition so referring to name refers to the value rather than the record accessor.

Pattern Matching with RecordWildcards
lowerCaseName :: Person -> String
lowerCaseName (Person { .. }) = map toLower name

When matching using RecordWildCards, all field labels are brought into scope. (In this specific example, name and
age)

This extension is slightly controversial as it is not clear how values are brought into scope if you are not sure of the
definition of Person.

Record Updates
setName :: String -> Person -> Person
setName newName person = person { name = newName }

There is also special syntax for updating data types with field labels.

Section 11.3: RecordWildCards
{-# LANGUAGE RecordWildCards #-}

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 61

data Client = Client { firstName :: String
 , lastName :: String
 , clientID :: String
 } deriving (Show)

printClientName :: Client -> IO ()
printClientName Client{..} = do
 putStrLn firstName
 putStrLn lastName
 putStrLn clientID

The pattern Client{..} brings in scope all the fields of the constructor Client, and is equivalent to the pattern

Client{ firstName = firstName, lastName = lastName, clientID = clientID }

It can also be combined with other field matchers like so:

Client { firstName = "Joe", .. }

This is equivalent to

Client{ firstName = "Joe", lastName = lastName, clientID = clientID }

Section 11.4: Copying Records while Changing Field Values
Suppose you have this type:

data Person = Person { name :: String, age:: Int } deriving (Show, Eq)

and two values:

alex = Person { name = "Alex", age = 21 }
jenny = Person { name = "Jenny", age = 36 }

a new value of type Person can be created by copying from alex, specifying which values to change:

anotherAlex = alex { age = 31 }

The values of alex and anotherAlex will now be:

Person {name = "Alex", age = 21}

Person {name = "Alex", age = 31}

Section 11.5: Records with newtype
Record syntax can be used with newtype with the restriction that there is exactly one constructor with exactly one
field. The benefit here is the automatic creation of a function to unwrap the newtype. These fields are often named
starting with run for monads, get for monoids, and un for other types.

newtype State s a = State { runState :: s -> (s, a) }

newtype Product a = Product { getProduct :: a }

newtype Fancy = Fancy { unfancy :: String }

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 62

 -- a fancy string that wants to avoid concatenation with ordinary strings

It is important to note that the record syntax is typically never used to form values and the field name is used
strictly for unwrapping

getProduct $ mconcat [Product 7, Product 9, Product 12]
-- > 756

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 63

Chapter 12: Partial Application
Section 12.1: Sections
Sectioning is a concise way to partially apply arguments to infix operators.

For example, if we want to write a function which adds "ing" to the end of a word we can use a section to succinctly
define a function.

> (++ "ing") "laugh"
"laughing"

Notice how we have partially applied the second argument. Normally, we can only partially apply the arguments in
the specified order.

We can also use left sectioning to partially apply the first argument.

> ("re" ++) "do"
"redo"

We could equivalently write this using normal prefix partial application:

> ((++) "re") "do"
"redo"

A Note on Subtraction

Beginners often incorrectly section negation.

> map (-1) [1,2,3]
***error: Could not deduce...

This does not work as -1 is parsed as the literal -1 rather than the sectioned operator - applied to 1. The subtract
function exists to circumvent this issue.

> map (subtract 1) [1,2,3]
[0,1,2]

Section 12.2: Partially Applied Adding Function
We can use partial application to "lock" the first argument. After applying one argument we are left with a function
which expects one more argument before returning the result.

(+) :: Int -> Int -> Int

addOne :: Int -> Int
addOne = (+) 1

We can then use addOne in order to add one to an Int.

> addOne 5
6
> map addOne [1,2,3]
[2,3,4]

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 64

Section 12.3: Returning a Partially Applied Function
Returning partially applied functions is one technique to write concise code.

add :: Int -> Int -> Int
add x = (+x)

add 5 2

In this example (+x) is a partially applied function. Notice that the second parameter to the add function does not
need to be specified in the function definition.

The result of calling add 5 2 is seven.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 65

Chapter 13: Monoid
Section 13.1: An instance of Monoid for lists
instance Monoid [a] where
 mempty = []
 mappend = (++)

Checking the Monoid laws for this instance:

mempty `mappend` x = x <-> [] ++ xs = xs -- prepending an empty list is a no-op

x `mappend` mempty = x <-> xs ++ [] = xs -- appending an empty list is a no-op

x `mappend` (y `mappend` z) = (x `mappend` y) `mappend` z
 <->
xs ++ (ys ++ zs) = (xs ++ ys) ++ zs -- appending lists is associative

Section 13.2: Collapsing a list of Monoids into a single value
mconcat :: [a] -> a is another method of the Monoid typeclass:

ghci> mconcat [Sum 1, Sum 2, Sum 3]
Sum {getSum = 6}
ghci> mconcat ["concat", "enate"]
"concatenate"

Its default definition is mconcat = foldr mappend mempty.

Section 13.3: Numeric Monoids
Numbers are monoidal in two ways: addition with 0 as the unit, and multiplication with 1 as the unit. Both are
equally valid and useful in different circumstances. So rather than choose a preferred instance for numbers, there
are two newtypes, Sum and Product to tag them for the different functionality.

newtype Sum n = Sum { getSum :: n }

instance Num n => Monoid (Sum n) where
 mempty = Sum 0
 Sum x `mappend` Sum y = Sum (x + y)

newtype Product n = Product { getProduct :: n }

instance Num n => Monoid (Product n) where
 mempty = Product 1
 Product x `mappend` Product y = Product (x * y)

This effectively allows for the developer to choose which functionality to use by wrapping the value in the
appropriate newtype.

Sum 3 <> Sum 5 == Sum 8
Product 3 <> Product 5 == Product 15

http://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Monoid.html#v:mconcat
http://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Monoid.html#v:mconcat
http://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Monoid.html#v:mconcat
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 66

Section 13.4: An instance of Monoid for ()
() is a Monoid. Since there is only one value of type (), there's only one thing mempty and mappend could do:

instance Monoid () where
 mempty = ()
 () `mappend` () = ()

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 67

Chapter 14: Category Theory
Section 14.1: Category theory as a system for organizing
abstraction
Category theory is a modern mathematical theory and a branch of abstract algebra focused on the nature of
connectedness and relation. It is useful for giving solid foundations and common language to many highly reusable
programming abstractions. Haskell uses Category theory as inspiration for some of the core typeclasses available in
both the standard library and several popular third-party libraries.

An example

The Functor typeclass says that if a type F instantiates Functor (for which we write Functor F) then we have a
generic operation

fmap :: (a -> b) -> (F a -> F b)

which lets us "map" over F. The standard (but imperfect) intuition is that F a is a container full of values of type a
and fmap lets us apply a transformation to each of these contained elements. An example is Maybe

instance Functor Maybe where
 fmap f Nothing = Nothing -- if there are no values contained, do nothing
 fmap f (Just a) = Just (f a) -- else, apply our transformation

Given this intuition, a common question is "why not call Functor something obvious like Mappable?".

A hint of Category Theory

The reason is that Functor fits into a set of common structures in Category theory and therefore by calling Functor
"Functor" we can see how it connects to this deeper body of knowledge.

In particular, Category Theory is highly concerned with the idea of arrows from one place to another. In Haskell, the
most important set of arrows are the function arrows a -> b. A common thing to study in Category Theory is how
one set of arrows relates to another set. In particular, for any type constructor F, the set of arrows of the shape F a
-> F b are also interesting.

So a Functor is any F such that there is a connection between normal Haskell arrows a -> b and the F-specific
arrows F a -> F b. The connection is defined by fmap and we also recognize a few laws which must hold

forall (x :: F a) . fmap id x == x

forall (f :: a -> b) (g :: b -> c) . fmap g . fmap f = fmap (g . f)

All of these laws arise naturally from the Category Theoretic interpretation of Functor and would not be as
obviously necessary if we only thought of Functor as relating to "mapping over elements".

Section 14.2: Haskell types as a category
Definition of the category

The Haskell types along with functions between types form (almost†) a category. We have an identity morphism
(function) (id :: a -> a) for every object (type) a; and composition of morphisms ((.) :: (b -> c) -> (a -> b)
-> a -> c), which obey category laws:

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 68

f . id = f = id . f
h . (g . f) = (h . g) . f

We usually call this category Hask.

Isomorphisms

In category theory, we have an isomorphism when we have a morphism which has an inverse, in other words, there
is a morphism which can be composed with it in order to create the identity. In Hask this amounts to have a pair of
morphisms f,g such that:

 f . g == id == g . f

If we find a pair of such morphisms between two types, we call them isomorphic to one another.

An example of two isomorphic types would be ((),a) and a for some a. We can construct the two morphisms:

f :: ((),a) -> a
f ((),x) = x

g :: a -> ((),a)
g x = ((),x)

And we can check that f . g == id == g . f.

Functors

A functor, in category theory, goes from a category to another, mapping objects and morphisms. We are working
only on one category, the category Hask of Haskell types, so we are going to see only functors from Hask to Hask,
those functors, whose origin and destination category are the same, are called endofunctors. Our endofunctors
will be the polymorphic types taking a type and returning another:

F :: * -> *

To obey the categorical functor laws (preserve identities and composition) is equivalent to obey the Haskell functor
laws:

fmap (f . g) = (fmap f) . (fmap g)
fmap id = id

So, we have, for example, that [], Maybe or (-> r) are functors in Hask.

Monads

A monad in category theory is a monoid on the category of endofunctors. This category has endofunctors as
objects F :: * -> * and natural transformations (transformations between them forall a . F a -> G a) as
morphisms.

A monoid object can be defined on a monoidal category, and is a type having two morphisms:

zero :: () -> M
mappend :: (M,M) -> M

We can translate this roughly to the category of Hask endofunctors as:

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 69

return :: a -> m a
join :: m (m a) -> m a

And, to obey the monad laws is equivalent to obey the categorical monoid object laws.

†In fact, the class of all types along with the class of functions between types do not strictly form a category in
Haskell, due to the existance of undefined. Typically this is remedied by simply defining the objects of the Hask
category as types without bottom values, which excludes non-terminating functions and infinite values (codata). For
a detailed discussion of this topic, see here.

Section 14.3: Definition of a Category
A category C consists of:

A collection of objects called Obj(C) ;

A collection (called Hom(C)) of morphisms between those objects. If a and b are in Obj(C), then a morphism f
in Hom(C) is typically denoted f : a -> b, and the collection of all morphism between a and b is denoted
hom(a,b) ;

A special morphism called the identity morphism - for every a : Obj(C) there exists a morphism id : a ->
a ;

A composition operator (.), taking two morphisms f : a -> b, g : b -> c and producing a morphism a ->
c

which obey the following laws:

For all f : a -> x, g : x -> b, then id . f = f and g . id = g

For all f : a -> b, g : b -> c and h : c -> d, then h . (g . f) = (h . g) . f

In other words, composition with the identity morphism (on either the left or right) does not change the other
morphism, and composition is associative.

In Haskell, the Category is defined as a typeclass in Control.Category:

-- | A class for categories.
-- id and (.) must form a monoid.
class Category cat where
 -- | the identity morphism
 id :: cat a a

 -- | morphism composition
 (.) :: cat b c -> cat a b -> cat a c

In this case, cat :: k -> k -> * objectifies the morphism relation - there exists a morphism cat a b if and only if
cat a b is inhabited (i.e. has a value). a, b and c are all in Obj(C). Obj(C) itself is represented by the kind k - for
example, when k ~ *, as is typically the case, objects are types.

The canonical example of a Category in Haskell is the function category:

instance Category (->) where
 id = Prelude.id
 (.) = Prelude..

https://wiki.haskell.org/Hask
https://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Category.html
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 70

Another common example is the Category of Kleisli arrows for a Monad:

newtype Kleisli m a b = Kleisli (a -> m b)

class Monad m => Category (Kleisli m) where
 id = Kleisli return
 Kleisli f . Kleisli g = Kleisli (f >=> g)

Section 14.4: Coproduct of types in Hask
Intuition

The categorical product of two types A and B should contain the minimal information necessary to contain inside
an instance of type A or type B. We can see now that the intuitive coproduct of two types should be Either a b.
Other candidates, such as Either a (b,Bool), would contain a part of unnecessary information, and they wouldn't
be minimal.

The formal definition is derived from the categorical definition of coproduct.

Categorical coproducts

A categorical coproduct is the dual notion of a categorical product. It is obtained directly by reversing all the arrows
in the definition of the product. The coproduct of two objects X,Y is another object Z with two inclusions: i_1: X → Z
and i_2: Y → Z; such that any other two morphisms from X and Y to another object decompose uniquely through
those inclusions. In other words, if there are two morphisms f₁ : X → W and f₂ : Y → W, exists a unique morphism g :
Z → W such that g ○ i₁ = f₁ and g ○ i₂ = f₂

Coproducts in Hask

The translation into the Hask category is similar to the translation of the product:

-- if there are two functions
f1 :: A -> W
f2 :: B -> W
-- and we have a coproduct with two inclusions
i1 :: A -> Z
i2 :: B -> Z
-- we can construct a unique function
g :: Z -> W
-- such that the other two functions decompose using g
g . i1 == f1
g . i2 == f2

The coproduct type of two types A and B in Hask is Either a b or any other type isomorphic to it:

-- Coproduct
-- The two inclusions are Left and Right
data Either a b = Left a | Right b

-- If we have those functions, we can decompose them through the coproduct
decompose :: (A -> W) -> (B -> W) -> (Either A B -> W)
decompose f1 f2 (Left x) = f1 x
decompose f1 f2 (Right y) = f2 y

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 71

Section 14.5: Product of types in Hask
Categorical products

In category theory, the product of two objects X, Y is another object Z with two projections: π₁ : Z → X and π₂ : Z → Y;
such that any other two morphisms from another object decompose uniquely through those projections. In other
words, if there exist f₁ : W → X and f₂ : W → Y, exists a unique morphism g : W → Z such that π₁ ○ g = f₁ and π₂ ○ g =
f₂.

Products in Hask

This translates into the Hask category of Haskell types as follows, Z is product of A, B when:

-- if there are two functions
f1 :: W -> A
f2 :: W -> B
-- we can construct a unique function
g :: W -> Z
-- and we have two projections
p1 :: Z -> A
p2 :: Z -> B
-- such that the other two functions decompose using g
p1 . g == f1
p2 . g == f2

The product type of two types A, B, which follows the law stated above, is the tuple of the two types (A,B), and
the two projections are fst and snd. We can check that it follows the above rule, if we have two functions f1 :: W
-> A and f2 :: W -> B we can decompose them uniquely as follow:

decompose :: (W -> A) -> (W -> B) -> (W -> (A,B))
decompose f1 f2 = (\x -> (f1 x, f2 x))

And we can check that the decomposition is correct:

fst . (decompose f1 f2) = f1
snd . (decompose f1 f2) = f2

Uniqueness up to isomorphism

The choice of (A,B) as the product of A and B is not unique. Another logical and equivalent choice would have been:

data Pair a b = Pair a b

Moreover, we could have also chosen (B,A) as the product, or even (B,A,()), and we could find a decomposition
function like the above also following the rules:

decompose2 :: (W -> A) -> (W -> B) -> (W -> (B,A,()))
decompose2 f1 f2 = (\x -> (f2 x, f1 x, ()))

This is because the product is not unique but unique up to isomorphism. Every two products of A and B do not have
to be equal, but they should be isomorphic. As an example, the two different products we have just defined, (A,B)
and (B,A,()), are isomorphic:

iso1 :: (A,B) -> (B,A,())
iso1 (x,y) = (y,x,())

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 72

iso2 :: (B,A,()) -> (A,B)
iso2 (y,x,()) = (x,y)

Uniqueness of the decomposition

It is important to remark that also the decomposition function must be unique. There are types which follow all the
rules required to be product, but the decomposition is not unique. As an example, we can try to use (A,(B,Bool))
with projections fst fst . snd as a product of A and B:

decompose3 :: (W -> A) -> (W -> B) -> (W -> (A,(B,Bool)))
decompose3 f1 f2 = (\x -> (f1 x, (f2 x, True)))

We can check that it does work:

fst . (decompose3 f1 f2) = f1 x
(fst . snd) . (decompose3 f1 f2) = f2 x

But the problem here is that we could have written another decomposition, namely:

decompose3' :: (W -> A) -> (W -> B) -> (W -> (A,(B,Bool)))
decompose3' f1 f2 = (\x -> (f1 x, (f2 x, False)))

And, as the decomposition is not unique, (A,(B,Bool)) is not the product of A and B in Hask

Section 14.6: Haskell Applicative in terms of Category Theory
A Haskell's Functor allows one to map any type a (an object of Hask) to a type F a and also map a function a -> b
(a morphism of Hask) to a function with type F a -> F b. This corresponds to a Category Theory definition in a
sense that functor preserves basic category structure.

A monoidal category is a category that has some additional structure:

A tensor product (see Product of types in Hask)
A tensor unit (unit object)

Taking a pair as our product, this definition can be translated to Haskell in the following way:

class Functor f => Monoidal f where
 mcat :: f a -> f b -> f (a,b)
 munit :: f ()

The Applicative class is equivalent to this Monoidal one and thus can be implemented in terms of it:

instance Monoidal f => Applicative f where
 pure x = fmap (const x) munit
 f <*> fa = (\(f, a) -> f a) <$> (mcat f fa)

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 73

Chapter 15: Lists
Section 15.1: List basics
The type constructor for lists in the Haskell Prelude is []. The type declaration for a list holding values of type Int is
written as follows:

xs :: [Int] -- or equivalently, but less conveniently,
xs :: [] Int

Lists in Haskell are homogeneous sequences, which is to say that all elements must be of the same type. Unlike
tuples, list type is not affected by length:

[1,2,3] :: [Int]
[1,2,3,4] :: [Int]

Lists are constructed using two constructors:

[] constructs an empty list.

(:), pronounced "cons", prepends elements to a list. Consing x (a value of type a) onto xs (a list of values of
the same type a) creates a new list, whose head (the first element) is x, and tail (the rest of the elements) is
xs.

We can define simple lists as follows:

ys :: [a]
ys = []

xs :: [Int]
xs = 12 : (99 : (37 : []))
-- or = 12 : 99 : 37 : [] -- ((:) is right-associative)
-- or = [12, 99, 37] -- (syntactic sugar for lists)

Note that (++), which can be used to build lists is defined recursively in terms of (:) and [].

Section 15.2: Processing lists
To process lists, we can simply pattern match on the constructors of the list type:

listSum :: [Int] -> Int
listSum [] = 0
listSum (x:xs) = x + listSum xs

We can match more values by specifying a more elaborate pattern:

sumTwoPer :: [Int] -> Int
sumTwoPer [] = 0
sumTwoPer (x1:x2:xs) = x1 + x2 + sumTwoPer xs
sumTwoPer (x:xs) = x + sumTwoPer xs

Note that in the above example, we had to provide a more exhaustive pattern match to handle cases where an odd
length list is given as an argument.

http://en.wikipedia.org/wiki/Sequence
https://www.haskell.org/onlinereport/haskell2010/haskellch6.html#x13-1200006.1.3
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 74

The Haskell Prelude defines many built-ins for handling lists, like map, filter, etc.. Where possible, you should use
these instead of writing your own recursive functions.

Section 15.3: Ranges
Creating a list from 1 to 10 is simple using range notation:

[1..10] -- [1,2,3,4,5,6,7,8,9,10]

To specify a step, add a comma and the next element after the start element:

[1,3..10] -- [1,3,5,7,9]

Note that Haskell always takes the step as the arithmetic difference between terms, and that you cannot specify
more than the first two elements and the upper bound:

[1,3,5..10] -- error
[1,3,9..20] -- error

To generate a range in descending order, always specify the negative step:

[5..1] -- []

[5,4..1] -- [5,4,3,2,1]

Because Haskell is non-strict, the elements of the list are evaluated only if they are needed, which allows us to use
infinite lists. [1..] is an infinite list starting from 1. This list can be bound to a variable or passed as a function
argument:

take 5 [1..] -- returns [1,2,3,4,5] even though [1..] is infinite

Be careful when using ranges with floating-point values, because it accepts spill-overs up to half-delta, to fend off
rounding issues:

[1.0,1.5..2.4] -- [1.0,1.5,2.0,2.5] , though 2.5 > 2.4

[1.0,1.1..1.2] -- [1.0,1.1,1.2000000000000002] , though 1.2000000000000002 > 1.2

Ranges work not just with numbers but with any type that implements Enum typeclass. Given some enumerable
variables a, b, c, the range syntax is equivalent to calling these Enum methods:

[a..] == enumFrom a
[a..c] == enumFromTo a c
[a,b..] == enumFromThen a b
[a,b..c] == enumFromThenTo a b c

For example, with Bool it's

 [False ..] -- [False,True]

Notice the space after False, to prevent this to be parsed as a module name qualification (i.e. False.. would be
parsed as . from a module False).

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 75

Section 15.4: List Literals
emptyList = []

singletonList = [0] -- = 0 : []

listOfNums = [1, 2, 3] -- = 1 : 2 : [3]

listOfStrings = ["A", "B", "C"]

Section 15.5: List Concatenation
listA = [1, 2, 3]

listB = [4, 5, 6]

listAThenB = listA ++ listB -- [1, 2, 3, 4, 5, 6]

(++) xs [] = xs
(++) [] ys = ys
(++) (x:xs) ys = x : (xs ++ ys)

Section 15.6: Accessing elements in lists
Access the nth element of a list (zero-based):

list = [1 .. 10]

firstElement = list !! 0 -- 1

Note that !! is a partial function, so certain inputs produce errors:

list !! (-1) -- *** Exception: Prelude.!!: negative index

list !! 1000 -- *** Exception: Prelude.!!: index too large

There's also Data.List.genericIndex, an overloaded version of !!, which accepts any Integral value as the index.

import Data.List (genericIndex)

list `genericIndex` 4 -- 5

When implemented as singly-linked lists, these operations take O(n) time. If you frequently access elements by
index, it's probably better to use Data.Vector (from the vector package) or other data structures.

Section 15.7: Basic Functions on Lists
head [1..10] -- 1

last [1..20] -- 20

tail [1..5] -- [2, 3, 4, 5]

init [1..5] -- [1, 2, 3, 4]

length [1 .. 10] -- 10

https://hackage.haskell.org/package/vector
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 76

reverse [1 .. 10] -- [10, 9 .. 1]

take 5 [1, 2 ..] -- [1, 2, 3, 4, 5]

drop 5 [1 .. 10] -- [6, 7, 8, 9, 10]

concat [[1,2], [], [4]] -- [1,2,4]

Section 15.8: Transforming with `map`
Often we wish to convert, or transform the contents of a collection (a list, or something traversable). In Haskell we
use map:

 -- Simple add 1
 map (+ 1) [1,2,3]
 [2,3,4]

 map odd [1,2,3]
 [True,False,True]

 data Gender = Male | Female deriving Show
 data Person = Person String Gender Int deriving Show

 -- Extract just the age from a list of people
 map (\(Person n g a) -> a) [(Person "Alex" Male 31),(Person "Ellie" Female 29)]
 [31,29]

Section 15.9: Filtering with `filter`
Given a list:

 li = [1,2,3,4,5]

we can filter a list with a predicate using filter :: (a -> Bool) -> [a] -> [a]:

 filter (== 1) li -- [1]

 filter (even) li -- [2,4]

 filter (odd) li -- [1,3,5]

 -- Something slightly more complicated
 comfy i = notTooLarge && isEven
 where
 notTooLarge = (i + 1) < 5
 isEven = even i

 filter comfy li -- [2]

Of course it's not just about numbers:

 data Gender = Male | Female deriving Show
 data Person = Person String Gender Int deriving Show

 onlyLadies :: [Person] -> Person
 onlyLadies x = filter isFemale x
 where
 isFemale (Person _ Female _) = True

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 77

 isFemale _ = False

 onlyLadies [(Person "Alex" Male 31),(Person "Ellie" Female 29)]
 -- [Person "Ellie" Female 29]

Section 15.10: foldr
This is how the right fold is implemented:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs) -- = x `f` foldr f z xs

The right fold, foldr, associates to the right. That is:

foldr (+) 0 [1, 2, 3] -- is equivalent to 1 + (2 + (3 + 0))

The reason is that foldr is evaluated like this (look at the inductive step of foldr):

foldr (+) 0 [1, 2, 3] -- foldr (+) 0 [1,2,3]
(+) 1 (foldr (+) 0 [2, 3]) -- 1 + foldr (+) 0 [2,3]
(+) 1 ((+) 2 (foldr (+) 0 [3])) -- 1 + (2 + foldr (+) 0 [3])
(+) 1 ((+) 2 ((+) 3 (foldr (+) 0 []))) -- 1 + (2 + (3 + foldr (+) 0 []))
(+) 1 ((+) 2 ((+) 3 0)) -- 1 + (2 + (3 + 0))

The last line is equivalent to 1 + (2 + (3 + 0)), because ((+) 3 0) is the same as (3 + 0).

Section 15.11: Zipping and Unzipping Lists
zip takes two lists and returns a list of corresponding pairs:

zip [] _ = []
zip _ [] = []
zip (a:as) (b:bs) = (a,b) : zip as bs

> zip [1,3,5] [2,4,6]
> [(1,2),(3,4),(5,6)]

Zipping two lists with a function:

zipWith f [] _ = []
zipWith f _ [] = []
zipWith f (a:as) (b:bs) = f a b : zipWith f as bs

> zipWith (+) [1,3,5] [2,4,6]
> [3,7,11]

Unzipping a list:

unzip = foldr (\(a,b) ~(as,bs) -> (a:as,b:bs)) ([],[])

> unzip [(1,2),(3,4),(5,6)]
> ([1,3,5],[2,4,6])

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 78

Section 15.12: foldl
This is how the left fold is implemented. Notice how the order of the arguments in the step function is flipped
compared to foldr (the right fold):

foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f acc [] = acc
foldl f acc (x:xs) = foldl f (f acc x) xs -- = foldl f (acc `f` x) xs

The left fold, foldl, associates to the left. That is:

foldl (+) 0 [1, 2, 3] -- is equivalent to ((0 + 1) + 2) + 3

The reason is that foldl is evaluated like this (look at foldl's inductive step):

foldl (+) 0 [1, 2, 3] -- foldl (+) 0 [1, 2, 3]
foldl (+) ((+) 0 1) [2, 3] -- foldl (+) (0 + 1) [2, 3]
foldl (+) ((+) ((+) 0 1) 2) [3] -- foldl (+) ((0 + 1) + 2) [3]
foldl (+) ((+) ((+) ((+) 0 1) 2) 3) [] -- foldl (+) (((0 + 1) + 2) + 3) []
((+) ((+) ((+) 0 1) 2) 3) -- (((0 + 1) + 2) + 3)

The last line is equivalent to ((0 + 1) + 2) + 3. This is because (f a b) is the same as (a `f` b) in general, and
so ((+) 0 1) is the same as (0 + 1) in particular.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 79

Chapter 16: Sorting Algorithms
Section 16.1: Insertion Sort
insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys) | x < y = x:y:ys
 | otherwise = y:(insert x ys)

isort :: Ord a => [a] -> [a]
isort [] = []
isort (x:xs) = insert x (isort xs)

Example use:

> isort [5,4,3,2,1]

Result:

[1,2,3,4,5]

Section 16.2: Permutation Sort
Also known as bogosort.

import Data.List (permutations)

sorted :: Ord a => [a] -> Bool
sorted (x:y:xs) = x <= y && sorted (y:xs)
sorted _ = True

psort :: Ord a => [a] -> [a]
psort = head . filter sorted . permutations

Extremely inefficient (on today's computers).

Section 16.3: Merge Sort
Ordered merging of two ordered lists

Preserving the duplicates:

merge :: Ord a => [a] -> [a] -> [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys) | x <= y = x:merge xs (y:ys)
 | otherwise = y:merge (x:xs) ys

Top-down version:

msort :: Ord a => [a] -> [a]
msort [] = []
msort [a] = [a]
msort xs = merge (msort (firstHalf xs)) (msort (secondHalf xs))

https://en.wikipedia.org/wiki/Bogosort
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 80

firstHalf xs = let { n = length xs } in take (div n 2) xs
secondHalf xs = let { n = length xs } in drop (div n 2) xs

It is defined this way for clarity, not for efficiency.

Example use:

> msort [3,1,4,5,2]

Result:

[1,2,3,4,5]

Bottom-up version:

msort [] = []
msort xs = go [[x] | x <- xs]
 where
 go [a] = a
 go xs = go (pairs xs)
 pairs (a:b:t) = merge a b : pairs t
 pairs t = t

Section 16.4: Quicksort
qsort :: (Ord a) => [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort [a | a <- xs, a < x]
 ++ [x] ++
 qsort [b | b <- xs, b >= x]

Section 16.5: Bubble sort
bsort :: Ord a => [a] -> [a]
bsort s = case bsort' s of
 t | t == s -> t
 | otherwise -> bsort t
 where bsort' (x:x2:xs) | x > x2 = x2:(bsort' (x:xs))
 | otherwise = x:(bsort' (x2:xs))
 bsort' s = s

Section 16.6: Selection sort
Selection sort selects the minimum element, repeatedly, until the list is empty.

import Data.List (minimum, delete)

ssort :: Ord t => [t] -> [t]
ssort [] = []
ssort xs = let { x = minimum xs }
 in x : ssort (delete x xs)

https://en.wikipedia.org/wiki/Selection_sort
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 81

Chapter 17: Type Families
Section 17.1: Datatype Families
Data families can be used to build datatypes that have different implementations based on their type arguments.

Standalone data families
{-# LANGUAGE TypeFamilies #-}
data family List a
data instance List Char = Nil | Cons Char (List Char)
data instance List () = UnitList Int

In the above declaration, Nil :: List Char, and UnitList :: Int -> List ()

Associated data families

Data families can also be associated with typeclasses. This is often useful for types with “helper objects”, which are
required for generic typeclass methods but need to contain different information depending on the concrete
instance. For instance, indexing locations in a list just requires a single number, whereas in a tree you need a
number to indicate the path at each node:

class Container f where
 data Location f
 get :: Location f -> f a -> Maybe a

instance Container [] where
 data Location [] = ListLoc Int
 get (ListLoc i) xs
 | i < length xs = Just $ xs!!i
 | otherwise = Nothing

instance Container Tree where
 data Location Tree = ThisNode | NodePath Int (Location Tree)
 get ThisNode (Node x _) = Just x
 get (NodePath i path) (Node _ sfo) = get path =<< get i sfo

Section 17.2: Type Synonym Families
Type synonym families are just type-level functions: they associate parameter types with result types. These come
in three different varieties.

Closed type-synonym families

These work much like ordinary value-level Haskell functions: you specify some clauses, mapping certain types to
others:

{-# LANGUAGE TypeFamilies #-}
type family Vanquisher a where
 Vanquisher Rock = Paper
 Vanquisher Paper = Scissors
 Vanquisher Scissors = Rock

data Rock=Rock; data Paper=Paper; data Scissors=Scissors

Open type-synonym families

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 82

These work more like typeclass instances: anybody can add more clauses in other modules.

type family DoubledSize w

type instance DoubledSize Word16 = Word32
type instance DoubledSize Word32 = Word64
-- Other instances might appear in other modules, but two instances cannot overlap
-- in a way that would produce different results.

Class-associated type synonyms

An open type family can also be combined with an actual class. This is usually done when, like with associated data
families, some class method needs additional helper objects, and these helper objects can be different for different
instances but may possibly also shared. A good example is VectorSpace class:

class VectorSpace v where
 type Scalar v :: *
 (*^) :: Scalar v -> v -> v

instance VectorSpace Double where
 type Scalar Double = Double
 μ *^ n = μ * n

instance VectorSpace (Double,Double) where
 type Scalar (Double,Double) = Double
 μ *^ (n,m) = (μ*n, μ*m)

instance VectorSpace (Complex Double) where
 type Scalar (Complex Double) = Complex Double
 μ *^ n = μ*n

Note how in the first two instances, the implementation of Scalar is the same. This would not be possible with an
associated data family: data families are injective, type-synonym families aren't.

While non-injectivity opens up some possibilities like the above, it also makes type inference more difficult. For
instance, the following will not typecheck:

class Foo a where
 type Bar a :: *
 bar :: a -> Bar a
instance Foo Int where
 type Bar Int = String
 bar = show
instance Foo Double where
 type Bar Double = Bool
 bar = (>0)

main = putStrLn (bar 1)

In this case, the compiler can't know what instance to use, because the argument to bar is itself just a polymorphic
Num literal. And the type function Bar can't be resolved in “inverse direction”, precisely because it's not injective† and
hence not invertible (there could be more than one type with Bar a = String).

†With only these two instances, it is actually injective, but the compiler can't know somebody won't add more
instances later on and thereby break the behaviour.

http://hackage.haskell.org/package/vector-space-0.10.2/docs/Data-VectorSpace.html#t:VectorSpace
http://hackage.haskell.org/package/vector-space-0.10.2/docs/Data-VectorSpace.html#t:VectorSpace
https://en.wikipedia.org/wiki/Injective_function
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 83

Section 17.3: Injectivity
Type Families are not necessarily injective. Therefore, we cannot infer the parameter from an application. For
example, in servant, given a type Server a we cannot infer the type a. To solve this problem, we can use Proxy. For
example, in servant, the serve function has type ... Proxy a -> Server a -> We can infer a from Proxy a
because Proxy is defined by data which is injective.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 84

Chapter 18: Monads
A monad is a data type of composable actions. Monad is the class of type constructors whose values represent such
actions. Perhaps IO is the most recognizable one: a value of IO a is a "recipe for retrieving an a value from the real
world".

We say a type constructor m (such as [] or Maybe) forms a monad if there is an instance Monad m satisfying certain
laws about composition of actions. We can then reason about m a as an "action whose result has type a".

Section 18.1: Definition of Monad
class Monad m where
 return :: a -> m a
 (>>=) :: m a -> (a -> m b) -> m b

The most important function for dealing with monads is the bind operator >>=:

(>>=) :: m a -> (a -> m b) -> m b

Think of m a as "an action with an a result".
Think of a -> m b as “an action (depending on an a parameter) with a b result.”.

>>= sequences two actions together by piping the result from the first action to the second.

The other function defined by Monad is:

return :: a -> m a

Its name is unfortunate: this return has nothing to do with the return keyword found in imperative programming
languages.

return x is the trivial action yielding x as its result. (It is trivial in the following sense:)

return x >>= f ≡ f x -- “left identity” monad law
 x >>= return ≡ x -- “right identity” monad law

Section 18.2: No general way to extract value from a monadic
computation
You can wrap values into actions and pipe the result of one computation into another:

return :: Monad m => a -> m a
(>>=) :: Monad m => m a -> (a -> m b) -> m b

However, the definition of a Monad doesn’t guarantee the existence of a function of type Monad m => m a -> a.

That means there is, in general, no way to extract a value from a computation (i.e. “unwrap” it). This is the case
for many instances:

extract :: Maybe a -> a
extract (Just x) = x -- Sure, this works, but...
extract Nothing = undefined -- We can’t extract a value from failure.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 85

Specifically, there is no function IO a -> a, which often confuses beginners; see this example.

Section 18.3: Monad as a Subclass of Applicative
As of GHC 7.10, Applicative is a superclass of Monad (i.e., every type which is a Monad must also be an
Applicative). All the methods of Applicative (pure, <*>) can be implemented in terms of methods of Monad
(return, >>=).

It is obvious that pure and return serve equivalent purposes, so pure = return. The definition for <*> is too
relatively clear:

mf <*> mx = do { f <- mf; x <- mx; return (f x) }
 -- = mf >>= (\f -> mx >>= (\x -> return (f x)))
 -- = [r | f <- mf, x <- mx, r <- return (f x)] -- with MonadComprehensions
 -- = [f x | f <- mf, x <- mx]

This function is defined as ap in the standard libraries.

Thus if you have already defined an instance of Monad for a type, you effectively can get an instance of Applicative
for it "for free" by defining

instance Applicative < type > where
 pure = return
 (<*>) = ap

As with the monad laws, these equivalencies are not enforced, but developers should ensure that they are always
upheld.

Section 18.4: The Maybe monad
Maybe is used to represent possibly empty values - similar to null in other languages. Usually it is used as the
output type of functions that can fail in some way.

Consider the following function:

halve :: Int -> Maybe Int
halve x
 | even x = Just (x `div` 2)
 | odd x = Nothing

Think of halve as an action, depending on an Int, that tries to halve the integer, failing if it is odd.

How do we halve an integer three times?

takeOneEighth :: Int -> Maybe Int -- (after you read the 'do' sub-section:)
takeOneEighth x =
 case halve x of -- do {
 Nothing -> Nothing
 Just oneHalf -> -- oneHalf <- halve x
 case halve oneHalf of
 Nothing -> Nothing
 Just oneQuarter -> -- oneQuarter <- halve oneHalf
 case halve oneQuarter of
 Nothing -> Nothing -- oneEighth <- halve oneQuarter
 Just oneEighth ->
 Just oneEighth -- return oneEighth }

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 86

takeOneEighth is a sequence of three halve steps chained together.
If a halve step fails, we want the whole composition takeOneEighth to fail.
If a halve step succeeds, we want to pipe its result forward.

instance Monad Maybe where
 -- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
 Nothing >>= f = Nothing -- infixl 1 >>=
 Just x >>= f = Just (f x) -- also, f =<< m = m >>= f

 -- return :: a -> Maybe a
 return x = Just x

and now we can write:

takeOneEighth :: Int -> Maybe Int
takeOneEighth x = halve x >>= halve >>= halve -- or,
 -- return x >>= halve >>= halve >>= halve -- which is parsed as
 -- (((return x) >>= halve) >>= halve) >>= halve -- which can also be written as
 -- (halve =<<) . (halve =<<) . (halve =<<) $ return x -- or, equivalently, as
 -- halve <=< halve <=< halve $ x

Kleisli composition <=< is defined as (g <=< f) x = g =<< f x, or equivalently as (f >=> g) x = f x >>= g. With it
the above definition becomes just

takeOneEighth :: Int -> Maybe Int
takeOneEighth = halve <=< halve <=< halve -- infixr 1 <=<
 -- or, equivalently,
 -- halve >=> halve >=> halve -- infixr 1 >=>

There are three monad laws that should be obeyed by every monad, that is every type which is an instance of the
Monad typeclass:

1. return x >>= f = f x
2. m >>= return = m
3. (m >>= g) >>= h = m >>= (\y -> g y >>= h)

where m is a monad, f has type a -> m b and g has type b -> m c.

Or equivalently, using the >=> Kleisli composition operator defined above:

1. return >=> g = g -- do { y <- return x ; g y } == g x
2. f >=> return = f -- do { y <- f x ; return y } == f x
3. (f >=> g) >=> h = f >=> (g >=> h) -- do { z <- do { y <- f x; g y } ; h z }
 -- == do { y <- f x ; do { z <- g y; h z } }

Obeying these laws makes it a lot easier to reason about the monad, because it guarantees that using monadic
functions and composing them behaves in a reasonable way, similar to other monads.

Let's check if the Maybe monad obeys the three monad laws.

The left identity law - return x >>= f = f x1.

return z >>= f
= (Just z) >>= f
= f z

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 87

The right identity law - m >>= return = m2.

Just data constructor

Just z >>= return
= return z
= Just z

Nothing data constructor

Nothing >>= return
= Nothing

The associativity law - (m >>= f) >>= g = m >>= (\x -> f x >>= g)3.

Just data constructor

-- Left-hand side
((Just z) >>= f) >>= g
= f z >>= g

-- Right-hand side
(Just z) >>= (\x -> f x >>= g)
(\x -> f x >>= g) z
= f z >>= g

Nothing data constructor

-- Left-hand side
(Nothing >>= f) >>= g
= Nothing >>= g
= Nothing

-- Right-hand side
Nothing >>= (\x -> f x >>= g)
= Nothing

Section 18.5: IO monad
There is no way to get a value of type a out of an expression of type IO a and there shouldn't be. This is actually a
large part of why monads are used to model IO.

An expression of type IO a can be thought of as representing an action that can interact with the real world and, if
executed, would result in something of type a. For example, the function getLine :: IO String from the prelude
doesn't mean that underneath getLine there is some specific string that I can extract - it means that getLine
represents the action of getting a line from standard input.

Not surprisingly, main :: IO () since a Haskell program does represent a computation/action that interacts with
the real world.

The things you can do to expressions of type IO a because IO is a monad:

Sequence two actions using (>>) to produce a new action that executes the first action, discards whatever
value it produced, and then executes the second action.

 -- print the lines "Hello" then "World" to stdout
 putStrLn "Hello" >> putStrLn "World"

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 88

Sometimes you don't want to discard the value that was produced in the first action - you'd actually like it to
be fed into a second action. For that, we have >>=. For IO, it has type (>>=) :: IO a -> (a -> IO b) -> IO
b.

 -- get a line from stdin and print it back out
 getLine >>= putStrLn

Take a normal value and convert it into an action which just immediately returns the value you gave it. This
function is less obviously useful until you start using do notation.

 -- make an action that just returns 5
 return 5

More from the Haskell Wiki on the IO monad here.

Section 18.6: List Monad
The lists form a monad. They have a monad instantiation equivalent to this one:

instance Monad [] where return x = [x] xs >>= f = concat (map f xs)

We can use them to emulate non-determinism in our computations. When we use xs >>= f, the function f :: a
-> [b] is mapped over the list xs, obtaining a list of lists of results of each application of f over each element of xs,
and all the lists of results are then concatenated into one list of all the results. As an example, we compute a sum of
two non-deterministic numbers using do-notation, the sum being represented by list of sums of all pairs of
integers from two lists, each list representing all possible values of a non-deterministic number:

sumnd xs ys = do
 x <- xs
 y <- ys
 return (x + y)

Or equivalently, using liftM2 in Control.Monad:

sumnd = liftM2 (+)

we obtain:

> sumnd [1,2,3] [0,10]
[1,11,2,12,3,13]

Section 18.7: do-notation
do-notation is syntactic sugar for monads. Here are the rules:

do x <- mx do x <- mx y <- my is equivalent to do y <- my do let a = b let a = b in ... is equivalent to do ... do m m
>> (e is equivalent to e) do x <- m m >>= (\x -> e is equivalent to e) do m is equivalent to m

For example, these definitions are equivalent:

example :: IO Integer
example =
 putStrLn "What's your name?" >> (
 getLine >>= (\name ->

https://wiki.haskell.org/IO_inside
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 89

 putStrLn ("Hello, " ++ name ++ ".") >> (
 putStrLn "What should we return?" >> (
 getLine >>= (\line ->
 let n = (read line :: Integer) in
 return (n + n))))))

example :: IO Integer
example = do
 putStrLn "What's your name?"
 name <- getLine
 putStrLn ("Hello, " ++ name ++ ".")
 putStrLn "What should we return?"
 line <- getLine
 let n = (read line :: Integer)
 return (n + n)

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 90

Chapter 19: Stack
Section 19.1: Profiling with Stack
Configure profiling for a project via stack. First build the project with the --profile flag:

stack build --profile

GHC flags are not required in the cabal file for this to work (like -prof). stack will automatically turn on profiling for
both the library and executables in the project. The next time an executable runs in the project, the usual +RTS flags
can be used:

stack exec -- my-bin +RTS -p

Section 19.2: Structure
File structure

A simple project has the following files included in it:

➜ helloworld ls
LICENSE Setup.hs helloworld.cabal src stack.yaml

In the folder src there is a file named Main.hs. This is the "starting point" of the helloworld project. By default
Main.hs contains a simple "Hello, World!" program.

Main.hs

module Main where

main :: IO ()
main = do
 putStrLn "hello world"

Running the program

Make sure you are in the directory helloworld and run:

stack build # Compile the program
stack exec helloworld # Run the program
prints "hello world"

Section 19.3: Build and Run a Stack Project
In this example our project name is "helloworld" which was created with stack new helloworld simple

First we have to build the project with stack build and then we can run it with

stack exec helloworld-exe

Section 19.4: Viewing dependencies
To find out what packages your project directly depends on, you can simply use this command:

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 91

stack list-dependencies

This way you can find out what version of your dependencies where actually pulled down by stack.

Haskell projects frequently find themselves pulling in a lot of libraries indirectly, and sometimes these external
dependencies cause problems that you need to track down. If you find yourself with a rogue external dependency
that you'd like to identify, you can grep through the entire dependency graph and identify which of your
dependencies is ultimately pulling in the undesired package:

stack dot --external | grep template-haskell

stack dot prints out a dependency graph in text form that can be searched. It can also be viewed:

stack dot --external | dot -Tpng -o my-project.png

You can also set the depth of the dependency graph if you want:

stack dot --external --depth 3 | dot -Tpng -o my-project.png

Section 19.5: Stack install
By running the command

stack install

Stack will copy a executable file to the folder

/Users/<yourusername>/.local/bin/

Section 19.6: Installing Stack
Mac OSX

Using Homebrew:

brew install haskell-stack

Section 19.7: Creating a simple project
To create a project called helloworld run:

stack new helloworld simple

This will create a directory called helloworld with the files necessary for a Stack project.

Section 19.8: Stackage Packages and changing the LTS
(resolver) version
Stackage is a repository for Haskell packages. We can add these packages to a stack project.

Adding lens to a project.

In a stack project, there is a file called stack.yaml. In stack.yaml there is a segment that looks like:

http://brew.sh/
https://www.stackage.org/
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 92

resolver: lts-6.8

Stackage keeps a list of packages for every revision of lts. In our case we want the list of packages for lts-6.8 To
find these packages visit:

https://www.stackage.org/lts-6.8 # if a different version is used, change 6.8 to the correct
resolver number.

Looking through the packages, there is a Lens-4.13.

We can now add the language package by modifying the section of helloworld.cabal:

 build-depends: base >= 4.7 && < 5

to:

 build-depends: base >= 4.7 && 5,
 lens == 4.13

Obviously, if we want to change a newer LTS (after it's released), we just change the resolver number, eg.:

resolver: lts-6.9

With the next stack build Stack will use the LTS 6.9 version and hence download some new dependencies.

https://www.stackage.org/lts-6.8/package/lens-4.13
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 93

Chapter 20: Generalized Algebraic Data
Types
Section 20.1: Basic Usage
When the GADTs extension is enabled, besides regular data declarations, you can also declare generalized algebraic
datatypes as follows:

data DataType a where
 Constr1 :: Int -> a -> Foo a -> DataType a
 Constr2 :: Show a => a -> DataType a
 Constr3 :: DataType Int

A GADT declaration lists the types of all constructors a datatype has, explicitly. Unlike regular datatype declarations,
the type of a constructor can be any N-ary (including nullary) function that ultimately results in the datatype applied
to some arguments.

In this case we've declared that the type DataType has three constructors: Constr1, Constr2 and Constr3.

The Constr1 constructor is no different from one declared using a regular data declaration: data DataType a =
Constr1 Int a (Foo a) | ...

Constr2 however requires that a has an instance of Show, and so when using the constructor the instance would
need to exist. On the other hand, when pattern-matching on it, the fact that a is an instance of Show comes into
scope, so you can write:

foo :: DataType a -> String
foo val = case val of
 Constr2 x -> show x
 ...

Note that the Show a constraint doesn't appear in the type of the function, and is only visible in the code to the right
of ->.

Constr3 has type DataType Int, which means that whenever a value of type DataType a is a Constr3, it is known
that a ~ Int. This information, too, can be recovered with a pattern match.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 94

Chapter 21: Recursion Schemes
Section 21.1: Fixed points
Fix takes a "template" type and ties the recursive knot, layering the template like a lasagne.

newtype Fix f = Fix { unFix :: f (Fix f) }

Inside a Fix f we find a layer of the template f. To fill in f's parameter, Fix f plugs in itself. So when you look
inside the template f you find a recursive occurrence of Fix f.

Here is how a typical recursive datatype can be translated into our framework of templates and fixed points. We
remove recursive occurrences of the type and mark their positions using the r parameter.

{-# LANGUAGE DeriveFunctor #-}

-- natural numbers
-- data Nat = Zero | Suc Nat
data NatF r = Zero_ | Suc_ r deriving Functor
type Nat = Fix NatF

zero :: Nat
zero = Fix Zero_
suc :: Nat -> Nat
suc n = Fix (Suc_ n)

-- lists: note the additional type parameter a
-- data List a = Nil | Cons a (List a)
data ListF a r = Nil_ | Cons_ a r deriving Functor
type List a = Fix (ListF a)

nil :: List a
nil = Fix Nil_
cons :: a -> List a -> List a
cons x xs = Fix (Cons_ x xs)

-- binary trees: note two recursive occurrences
-- data Tree a = Leaf | Node (Tree a) a (Tree a)
data TreeF a r = Leaf_ | Node_ r a r deriving Functor
type Tree a = Fix (TreeF a)

leaf :: Tree a
leaf = Fix Leaf_
node :: Tree a -> a -> Tree a -> Tree a
node l x r = Fix (Node_ l x r)

Section 21.2: Primitive recursion
Paramorphisms model primitive recursion. At each iteration of the fold, the folding function receives the subtree for
further processing.

para :: Functor f => (f (Fix f, a) -> a) -> Fix f -> a
para f = f . fmap (\x -> (x, para f x)) . unFix

The Prelude's tails can be modelled as a paramorphism.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 95

tails :: List a -> List (List a)
tails = para alg
 where alg Nil_ = cons nil nil -- [[]]
 alg (Cons_ x (xs, xss)) = cons (cons x xs) xss -- (x:xs):xss

Section 21.3: Primitive corecursion
Apomorphisms model primitive corecursion. At each iteration of the unfold, the unfolding function may return either
a new seed or a whole subtree.

apo :: Functor f => (a -> f (Either (Fix f) a)) -> a -> Fix f
apo f = Fix . fmap (either id (apo f)) . f

Note that apo and para are dual. The arrows in the type are flipped; the tuple in para is dual to the Either in apo,
and the implementations are mirror images of each other.

Section 21.4: Folding up a structure one layer at a time
Catamorphisms, or folds, model primitive recursion. cata tears down a fixpoint layer by layer, using an algebra
function (or folding function) to process each layer. cata requires a Functor instance for the template type f.

cata :: Functor f => (f a -> a) -> Fix f -> a
cata f = f . fmap (cata f) . unFix

-- list example
foldr :: (a -> b -> b) -> b -> List a -> b
foldr f z = cata alg
 where alg Nil_ = z
 alg (Cons_ x acc) = f x acc

Section 21.5: Unfolding a structure one layer at a time
Anamorphisms, or unfolds, model primitive corecursion. ana builds up a fixpoint layer by layer, using a coalgebra
function (or unfolding function) to produce each new layer. ana requires a Functor instance for the template type f.

ana :: Functor f => (a -> f a) -> a -> Fix f
ana f = Fix . fmap (ana f) . f

-- list example
unfoldr :: (b -> Maybe (a, b)) -> b -> List a
unfoldr f = ana coalg
 where coalg x = case f x of
 Nothing -> Nil_
 Just (x, y) -> Cons_ x y

Note that ana and cata are dual. The types and implementations are mirror images of one another.

Section 21.6: Unfolding and then folding, fused
It's common to structure a program as building up a data structure and then collapsing it to a single value. This is
called a hylomorphism or refold. It's possible to elide the intermediate structure altogether for improved efficiency.

hylo :: Functor f => (a -> f a) -> (f b -> b) -> a -> b
hylo f g = g . fmap (hylo f g) . f -- no mention of Fix!

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 96

Derivation:

hylo f g = cata g . ana f
 = g . fmap (cata g) . unFix . Fix . fmap (ana f) . f -- definition of cata and ana
 = g . fmap (cata g) . fmap (ana f) . f -- unfix . Fix = id
 = g . fmap (cata g . ana f) . f -- Functor law
 = g . fmap (hylo f g) . f -- definition of hylo

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 97

Chapter 22: Data.Text
Section 22.1: Text Literals
The OverloadedStrings language extension allows the use of normal string literals to stand for Text values.

{-# LANGUAGE OverloadedStrings #-}

import qualified Data.Text as T

myText :: T.Text
myText = "overloaded"

Section 22.2: Checking if a Text is a substring of another Text
ghci> :set -XOverloadedStrings
ghci> import Data.Text as T

isInfixOf :: Text -> Text -> Bool checks whether a Text is contained anywhere within another Text.

ghci> "rum" `T.isInfixOf` "crumble"
True

isPrefixOf :: Text -> Text -> Bool checks whether a Text appears at the beginning of another Text.

ghci> "crumb" `T.isPrefixOf` "crumble"
True

isSuffixOf :: Text -> Text -> Bool checks whether a Text appears at the end of another Text.

ghci> "rumble" `T.isSuffixOf` "crumble"
True

Section 22.3: Stripping whitespace
{-# LANGUAGE OverloadedStrings #-}

import qualified Data.Text as T

myText :: T.Text
myText = "\n\r\t leading and trailing whitespace \t\r\n"

strip removes whitespace from the start and end of a Text value.

ghci> T.strip myText
"leading and trailing whitespace"

stripStart removes whitespace only from the start.

ghci> T.stripStart myText
"leading and trailing whitespace \t\r\n"

stripEnd removes whitespace only from the end.

https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isInfixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isInfixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isInfixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isInfixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isInfixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isInfixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isInfixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isInfixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isPrefixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isPrefixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isPrefixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isPrefixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isPrefixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isPrefixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isPrefixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isPrefixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isSuffixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isSuffixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isSuffixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isSuffixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isSuffixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isSuffixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isSuffixOf
https://hackage.haskell.org/package/text-1.2.2.1/docs/Data-Text.html#v:isSuffixOf
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 98

ghci> T.stripEnd myText
"\n\r\t leading and trailing whitespace"

filter can be used to remove whitespace, or other characters, from the middle.

ghci> T.filter /=' ' "spaces in the middle of a text string"
"spacesinthemiddleofatextstring"

Section 22.4: Indexing Text
{-# LANGUAGE OverloadedStrings #-}

import qualified Data.Text as T

myText :: T.Text

myText = "mississippi"

Characters at specific indices can be returned by the index function.

ghci> T.index myText 2
's'

The findIndex function takes a function of type (Char -> Bool) and Text and returns the index of the first
occurrence of a given string or Nothing if it doesn't occur.

ghci> T.findIndex ('s'==) myText
Just 2
ghci> T.findIndex ('c'==) myText
Nothing

The count function returns the number of times a query Text occurs within another Text.

ghci> count ("miss"::T.Text) myText
1

Section 22.5: Splitting Text Values
{-# LANGUAGE OverloadedStrings #-}

import qualified Data.Text as T

myText :: T.Text
myText = "mississippi"

splitOn breaks a Text up into a list of Texts on occurrences of a substring.

ghci> T.splitOn "ss" myText
["mi","i","ippi"]

splitOn is the inverse of intercalate.

ghci> intercalate "ss" (splitOn "ss" "mississippi")
"mississippi"

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 99

split breaks a Text value into chunks on characters that satisfy a Boolean predicate.

ghci> T.split (== 'i') myText
["m","ss","ss","pp",""]

Section 22.6: Encoding and Decoding Text
Encoding and decoding functions for a variety of Unicode encodings can be found in the Data.Text.Encoding
module.

ghci> import Data.Text.Encoding
ghci> decodeUtf8 (encodeUtf8 "my text")
"my text"

Note that decodeUtf8 will throw an exception on invalid input. If you want to handle invalid UTF-8 yourself, use
decodeUtf8With.

ghci> decodeUtf8With (\errorDescription input -> Nothing) messyOutsideData

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 100

Chapter 23: Using GHCi
Section 23.1: Breakpoints with GHCi
GHCi supports imperative-style breakpoints out of the box with interpreted code (code that's been :loaded).

With the following program:

-- mySum.hs
doSum n = do
 putStrLn ("Counting to " ++ (show n))
 let v = sum [1..n]
 putStrLn ("sum to " ++ (show n) ++ " = " ++ (show v))

loaded into GHCi:

Prelude> :load mySum.hs
[1 of 1] Compiling Main (mySum.hs, interpreted)
Ok, modules loaded: Main.
*Main>

We can now set breakpoints using line numbers:

*Main> :break 2
Breakpoint 0 activated at mySum.hs:2:3-39

and GHCi will stop at the relevant line when we run the function:

*Main> doSum 12
Stopped at mySum.hs:2:3-39
_result :: IO () = _
n :: Integer = 12
[mySum.hs:2:3-39] *Main>

It might be confusing where we are in the program, so we can use :list to clarify:

[mySum.hs:2:3-39] *Main> :list
1 doSum n = do
2 putStrLn ("Counting to " ++ (show n)) -- GHCi will emphasise this line, as that's where we've
stopped
3 let v = sum [1..n]

We can print variables, and continue execution too:

[mySum.hs:2:3-39] *Main> n
12
:continue
Counting to 12
sum to 12 = 78
*Main>

Section 23.2: Quitting GHCi
You can quit GHCi simply with :q or :quit

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 101

ghci> :q
Leaving GHCi.

ghci> :quit
Leaving GHCi.

Alternatively, the shortcut CTRL + D (Cmd + D for OSX) has the same effect as :q.

Section 23.3: Reloading a already loaded file
If you have loaded a file into GHCi (e.g. using :l filename.hs) and you have changed the file in an editor outside of
GHCi you must reload the file with :r or :reload in order to make use of the changes, hence you don't need to type
again the filename.

ghci> :r
OK, modules loaded: Main.

ghci> :reload
OK, modules loaded: Main.

Section 23.4: Starting GHCi
Type ghci at a shell prompt to start GHCI.

$ ghci
GHCi, version 8.0.1: http://www.haskell.org/ghc/ :? for help
Prelude>

Section 23.5: Changing the GHCi default prompt
By default, GHCI's prompt shows all the modules you have loaded into your interactive session. If you have many
modules loaded this can get long:

Prelude Data.List Control.Monad> -- etc

The :set prompt command changes the prompt for this interactive session.

Prelude Data.List Control.Monad> :set prompt "foo> "
foo>

To change the prompt permanently, add :set prompt "foo> " to the GHCi config file.

Section 23.6: The GHCi configuration file
GHCi uses a configuration file in ~/.ghci. A configuration file consists of a sequence of commands which GHCi will
execute on startup.

$ echo ":set prompt \"foo> \"" > ~/.ghci
$ ghci
GHCi, version 8.0.1: http://www.haskell.org/ghc/ :? for help
Loaded GHCi configuration from ~/.ghci
foo>

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 102

Section 23.7: Loading a file
The :l or :load command type-checks and loads a file.

$ echo "f = putStrLn \"example\"" > example.hs
$ ghci
GHCi, version 8.0.1: http://www.haskell.org/ghc/ :? for help
ghci> :l example.hs
[1 of 1] Compiling Main (example.hs, interpreted)
Ok, modules loaded: Main.
ghci> f
example

Section 23.8: Multi-line statements
The :{ instruction begins multi-line mode and :} ends it. In multi-line mode GHCi will interpret newlines as
semicolons, not as the end of an instruction.

ghci> :{
ghci| myFoldr f z [] = z
ghci| myFoldr f z (y:ys) = f y (myFoldr f z ys)
ghci| :}
ghci> :t myFoldr
myFoldr :: (a -> b -> b) -> b -> [a] -> b

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 103

Chapter 24: Strictness
Section 24.1: Bang Patterns
Patterns annotated with a bang (!) are evaluated strictly instead of lazily.

foo (!x, y) !z = [x, y, z]

In this example, x and z will both be evaluated to weak head normal form before returning the list. It's equivalent
to:

foo (x, y) z = x `seq` z `seq` [x, y, z]

Bang patterns are enabled using the Haskell 2010 BangPatterns language extension.

Section 24.2: Lazy patterns
Lazy, or irrefutable, patterns (denoted with the syntax ~pat) are patterns that always match, without even looking at
the matched value. This means lazy patterns will match even bottom values. However, subsequent uses of variables
bound in sub-patterns of an irrefutable pattern will force the pattern matching to occur, evaluating to bottom
unless the match succeeds.

The following function is lazy in its argument:

f1 :: Either e Int -> Int
f1 ~(Right 1) = 42

and so we get

λ» f1 (Right 1)
42
λ» f1 (Right 2)
42
λ» f1 (Left "foo")
42
λ» f1 (error "oops!")
42
λ» f1 "oops!"
*** type mismatch ***

The following function is written with a lazy pattern but is in fact using the pattern's variable which forces the
match, so will fail for Left arguments:

f2 :: Either e Int -> Int
f2 ~(Right x) = x + 1

λ» f2 (Right 1)
2
λ» f2 (Right 2)
3
λ» f2 (Right (error "oops!"))
*** Exception: oops!
λ» f2 (Left "foo")
*** Exception: lazypat.hs:5:1-21: Irrefutable pattern failed for pattern (Right x)

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 104

λ» f2 (error "oops!")
*** Exception: oops!

let bindings are lazy, behave as irrefutable patterns:

act1 :: IO ()
act1 = do
 ss <- readLn
 let [s1, s2] = ss :: [String]
 putStrLn "Done"

act2 :: IO ()
act2 = do
 ss <- readLn
 let [s1, s2] = ss
 putStrLn s1

Here act1 works on inputs that parse to any list of strings, whereas in act2 the putStrLn s1 needs the value of s1
which forces the pattern matching for [s1, s2], so it works only for lists of exactly two strings:

λ» act1
> ["foo"]
Done
λ» act2
> ["foo"]
*** readIO: no parse ***

Section 24.3: Normal forms
This example provides a brief overview - for a more in-depth explanation of normal forms and examples, see this
question.

Reduced normal form

The reduced normal form (or just normal form, when the context is clear) of an expression is the result of
evaluating all reducible subexpressions in the given expression. Due to the non-strict semantics of Haskell (typically
called laziness), a subexpression is not reducible if it is under a binder (i.e. a lambda abstraction - \x -> ..). The
normal form of an expression has the property that if it exists, it is unique.

In other words, it does not matter (in terms of denotational semantics) in which order you reduce subexpressions.
However, the key to writing performant Haskell programs is often ensuring that the right expression is evaluated at
the right time, i.e, the understanding the operational semantics.

An expression whose normal form is itself is said to be in normal form.

Some expressions, e.g. let x = 1:x in x, have no normal form, but are still productive. The example expression
still has a value, if one admits infinite values, which here is the list [1,1, ...]. Other expressions, such as let y =
1+y in y, have no value, or their value is undefined.

Weak head normal form

The RNF corresponds to fully evaluating an expression - likewise, the weak head normal form (WHNF) corresponds
to evaluating to the head of the expression. The head of an expression e is fully evaluated if e is an application Con
e1 e2 .. en and Con is a constructor; or an abstraction \x -> e1; or a partial application f e1 e2 .. en, where
partial application means f takes more than n arguments (or equivalently, the type of e is a function type). In any
case, the subexpressions e1..en can be evaluated or unevaluated for the expression to be in WHNF - they can even

http://stackoverflow.com/questions/6872898/haskell-what-is-weak-head-normal-form
http://stackoverflow.com/questions/6872898/haskell-what-is-weak-head-normal-form
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 105

be undefined.

The evaluation semantics of Haskell can be described in terms of the WHNF - to evaluate an expression e, first
evaluate it to WHNF, then recursively evaluate all of its subexpressions from left to right.

The primitive seq function is used to evaluate an expression to WHNF. seq x y is denotationally equal to y (the
value of seq x y is precisely y); furthermore x is evaluated to WHNF when y is evaluated to WHNF. An expression
can also be evaluated to WHNF with a bang pattern (enabled by the -XBangPatterns extension), whose syntax is as
follows:

f !x y = ...

In which x will be evaluated to WHNF when f is evaluated, while y is not (necessarily) evaluated. A bang pattern can
also appear in a constructor, e.g.

data X = Con A !B C .. N

in which case the constructor Con is said to be strict in the B field, which means the B field is evaluated to WHNF
when the constructor is applied to sufficient (here, two) arguments.

Section 24.4: Strict fields
In a data declaration, prefixing a type with a bang (!) makes the field a strict field. When the data constructor is
applied, those fields will be evaluated to weak head normal form, so the data in the fields is guaranteed to always
be in weak head normal form.

Strict fields can be used in both record and non-record types:

data User = User
 { identifier :: !Int
 , firstName :: !Text
 , lastName :: !Text
 }

data T = MkT !Int !Int

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 106

Chapter 25: Syntax in Functions
Section 25.1: Pattern Matching
Haskell supports pattern matching expressions in both function definition and through case statements.

A case statement is much like a switch in other languages, except it supports all of Haskell's types.

Let's start simple:

longName :: String -> String
longName name = case name of
 "Alex" -> "Alexander"
 "Jenny" -> "Jennifer"
 _ -> "Unknown" -- the "default" case, if you like

Or, we could define our function like an equation which would be pattern matching, just without using a case
statement:

longName "Alex" = "Alexander"
longName "Jenny" = "Jennifer"
longName _ = "Unknown"

A more common example is with the Maybe type:

data Person = Person { name :: String, petName :: (Maybe String) }

hasPet :: Person -> Bool
hasPet (Person _ Nothing) = False
hasPet _ = True -- Maybe can only take `Just a` or `Nothing`, so this wildcard suffices

Pattern matching can also be used on lists:

isEmptyList :: [a] -> Bool
isEmptyList [] = True
isEmptyList _ = False

addFirstTwoItems :: [Int] -> [Int]
addFirstTwoItems [] = []
addFirstTwoItems (x:[]) = [x]
addFirstTwoItems (x:y:ys) = (x + y) : ys

Actually, Pattern Matching can be used on any constructor for any type class. E.g. the constructor for lists is : and
for tuples ,

Section 25.2: Using where and guards
Given this function:

annualSalaryCalc :: (RealFloat a) => a -> a -> String
annualSalaryCalc hourlyRate weekHoursOfWork
 | hourlyRate * (weekHoursOfWork * 52) <= 40000 = "Poor child, try to get another job"
 | hourlyRate * (weekHoursOfWork * 52) <= 120000 = "Money, Money, Money!"
 | hourlyRate * (weekHoursOfWork * 52) <= 200000 = "Ri¢hie Ri¢h"
 | otherwise = "Hello Elon Musk!"

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 107

We can use where to avoid the repetition and make our code more readable. See the alternative function below,
using where:

annualSalaryCalc' :: (RealFloat a) => a -> a -> String
annualSalaryCalc' hourlyRate weekHoursOfWork
 | annualSalary <= smallSalary = "Poor child, try to get another job"
 | annualSalary <= mediumSalary = "Money, Money, Money!"
 | annualSalary <= highSalary = "Ri¢hie Ri¢h"
 | otherwise = "Hello Elon Musk!"
 where
 annualSalary = hourlyRate * (weekHoursOfWork * 52)
 (smallSalary, mediumSalary, highSalary) = (40000, 120000, 200000)

As observed, we used the where in the end of the function body eliminating the repetition of the calculation
(hourlyRate * (weekHoursOfWork * 52)) and we also used where to organize the salary range.

The naming of common sub-expressions can also be achieved with let expressions, but only the where syntax
makes it possible for guards to refer to those named sub-expressions.

Section 25.3: Guards
A function can be defined using guards, which can be thought of classifying behaviour according to input.

Take the following function definition:

absolute :: Int -> Int -- definition restricted to Ints for simplicity
absolute n = if (n < 0) then (-n) else n

We can rearrange it using guards:

absolute :: Int -> Int
absolute n
 | n < 0 = -n
 | otherwise = n

In this context otherwise is a meaningful alias for True, so it should always be the last guard.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 108

Chapter 26: Functor
Functor is the class of types f :: * -> * which can be covariantly mapped over. Mapping a function over a data
structure applies the function to all the elements of the structure without changing the structure itself.

Section 26.1: Class Definition of Functor and Laws
class Functor f where
 fmap :: (a -> b) -> f a -> f b

One way of looking at it is that fmap lifts a function of values into a function of values in a context f.

A correct instance of Functor should satisfy the functor laws, though these are not enforced by the compiler:

fmap id = id -- identity
fmap f . fmap g = fmap (f . g) -- composition

There's a commonly-used infix alias for fmap called <$>.

infixl 4 <$>
(<$>) :: Functor f => (a -> b) -> f a -> f b
(<$>) = fmap

Section 26.2: Replacing all elements of a Functor with a single
value
The Data.Functor module contains two combinators, <$ and $>, which ignore all of the values contained in a
functor, replacing them all with a single constant value.

infixl 4 <$, $>

<$:: Functor f => a -> f b -> f a
(<$) = fmap . const

$> :: Functor f => f a -> b -> f b
($>) = flip (<$)

void ignores the return value of a computation.

void :: Functor f => f a -> f ()
void = (() <$)

Section 26.3: Common instances of Functor
Maybe

Maybe is a Functor containing a possibly-absent value:

instance Functor Maybe where
 fmap f Nothing = Nothing
 fmap f (Just x) = Just (f x)

Maybe's instance of Functor applies a function to a value wrapped in a Just. If the computation has previously failed
(so the Maybe value is a Nothing), then there's no value to apply the function to, so fmap is a no-op.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 109

> fmap (+ 3) (Just 3)
Just 6
> fmap length (Just "mousetrap")
Just 9
> fmap sqrt Nothing
Nothing

We can check the functor laws for this instance using equational reasoning. For the identity law,

fmap id Nothing
Nothing -- definition of fmap
id Nothing -- definition of id

fmap id (Just x)
Just (id x) -- definition of fmap
Just x -- definition of id
id (Just x) -- definition of id

For the composition law,

(fmap f . fmap g) Nothing
fmap f (fmap g Nothing) -- definition of (.)
fmap f Nothing -- definition of fmap
Nothing -- definition of fmap
fmap (f . g) Nothing -- because Nothing = fmap f Nothing, for all f

(fmap f . fmap g) (Just x)
fmap f (fmap g (Just x)) -- definition of (.)
fmap f (Just (g x)) -- definition of fmap
Just (f (g x)) -- definition of fmap
Just ((f . g) x) -- definition of (.)
fmap (f . g) (Just x) -- definition of fmap

Lists

Lists' instance of Functor applies the function to every value in the list in place.

instance Functor [] where
 fmap f [] = []
 fmap f (x:xs) = f x : fmap f xs

This could alternatively be written as a list comprehension: fmap f xs = [f x | x <- xs].

This example shows that fmap generalises map. map only operates on lists, whereas fmap works on an arbitrary
Functor.

The identity law can be shown to hold by induction:

-- base case
fmap id []
[] -- definition of fmap
id [] -- definition of id

-- inductive step
fmap id (x:xs)
id x : fmap id xs -- definition of fmap
x : fmap id xs -- definition of id
x : id xs -- by the inductive hypothesis
x : xs -- definition of id

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 110

id (x : xs) -- definition of id

and similarly, the composition law:

-- base case
(fmap f . fmap g) []
fmap f (fmap g []) -- definition of (.)
fmap f [] -- definition of fmap
[] -- definition of fmap
fmap (f . g) [] -- because [] = fmap f [], for all f

-- inductive step
(fmap f . fmap g) (x:xs)
fmap f (fmap g (x:xs)) -- definition of (.)
fmap f (g x : fmap g xs) -- definition of fmap
f (g x) : fmap f (fmap g xs) -- definition of fmap
(f . g) x : fmap f (fmap g xs) -- definition of (.)
(f . g) x : fmap (f . g) xs -- by the inductive hypothesis
fmap (f . g) xs -- definition of fmap

Functions

Not every Functor looks like a container. Functions' instance of Functor applies a function to the return value of
another function.

instance Functor ((->) r) where
 fmap f g = \x -> f (g x)

Note that this definition is equivalent to fmap = (.). So fmap generalises function composition.

Once more checking the identity law:

fmap id g
\x -> id (g x) -- definition of fmap
\x -> g x -- definition of id
g -- eta-reduction
id g -- definition of id

and the composition law:

(fmap f . fmap g) h
fmap f (fmap g h) -- definition of (.)
fmap f (\x -> g (h x)) -- definition of fmap
\y -> f ((\x -> g (h x)) y) -- definition of fmap
\y -> f (g (h y)) -- beta-reduction
\y -> (f . g) (h y) -- definition of (.)
fmap (f . g) h -- definition of fmap

Section 26.4: Deriving Functor
The DeriveFunctor language extension allows GHC to generate instances of Functor automatically.

{-# LANGUAGE DeriveFunctor #-}

data List a = Nil | Cons a (List a) deriving Functor

-- instance Functor List where -- automatically defined
-- fmap f Nil = Nil
-- fmap f (Cons x xs) = Cons (f x) (fmap f xs)

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 111

map :: (a -> b) -> List a -> List b
map = fmap

Section 26.5: Polynomial functors
There's a useful set of type combinators for building big Functors out of smaller ones. These are instructive as
example instances of Functor, and they're also useful as a technique for generic programming, because they can
be used to represent a large class of common functors.

The identity functor

The identity functor simply wraps up its argument. It's a type-level implementation of the I combinator from SKI
calculus.

newtype I a = I a

instance Functor I where
 fmap f (I x) = I (f x)

I can be found, under the name of Identity, in the Data.Functor.Identity module.

The constant functor

The constant functor ignores its second argument, containing only a constant value. It's a type-level analogue of
const, the K combinator from SKI calculus.

newtype K c a = K c

Note that K c a doesn't contain any a-values; K () is isomorphic to Proxy. This means that K's implementation of
fmap doesn't do any mapping at all!

instance Functor (K c) where
 fmap _ (K c) = K c

K is otherwise known as Const, from Data.Functor.Const.

The remaining functors in this example combine smaller functors into bigger ones.

Functor products

The functor product takes a pair of functors and packs them up. It's analogous to a tuple, except that while (,) ::
* -> * -> * operates on types *, (:*:) :: (* -> *) -> (* -> *) -> (* -> *) operates on functors * -> *.

infixl 7 :*:
data (f :*: g) a = f a :*: g a

instance (Functor f, Functor g) => Functor (f :*: g) where
 fmap f (fx :*: gy) = fmap f fx :*: fmap f gy

This type can be found, under the name Product, in the Data.Functor.Product module.

Functor coproducts

Just like :*: is analogous to (,), :+: is the functor-level analogue of Either.

infixl 6 :+:

https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Identity.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Identity.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Identity.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Identity.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Identity.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Const.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Const.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Const.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Product.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Product.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Product.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Product.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Product.html
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 112

data (f :+: g) a = InL (f a) | InR (g a)

instance (Functor f, Functor g) => Functor (f :+: g) where
 fmap f (InL fx) = InL (fmap f fx)
 fmap f (InR gy) = InR (fmap f gy)

:+: can be found under the name Sum, in the Data.Functor.Sum module.

Functor composition

Finally, :.: works like a type-level (.), taking the output of one functor and plumbing it into the input of another.

infixr 9 :.:
newtype (f :.: g) a = Cmp (f (g a))

instance (Functor f, Functor g) => Functor (f :.: g) where
 fmap f (Cmp fgx) = Cmp (fmap (fmap f) fgx)

The Compose type can be found in Data.Functor.Compose

Polynomial functors for generic programming

I, K, :*:, :+: and :.: can be thought of as a kit of building blocks for a certain class of simple datatypes. The kit
becomes especially powerful when you combine it with fixed points because datatypes built with these
combinators are automatically instances of Functor. You use the kit to build a template type, marking recursive
points using I, and then plug it into Fix to get a type that can be used with the standard zoo of recursion schemes.

Name As a datatype Using the functor kit
Pairs of values data Pair a = Pair a a type Pair = I :*: I

Two-by-two grids type Grid a = Pair (Pair a) type Grid = Pair :.: Pair

Natural numbers data Nat = Zero | Succ Nat type Nat = Fix (K () :+: I)

Lists data List a = Nil | Cons a (List a) type List a = Fix (K () :+: K a :*: I)

Binary trees data Tree a = Leaf | Node (Tree a) a
(Tree a)

type Tree a = Fix (K () :+: I :*: K a :*:
I)

Rose trees data Rose a = Rose a (List (Rose a)) type Rose a = Fix (K a :*: List :.: I)

This "kit" approach to designing datatypes is the idea behind generic programming libraries such as generics-sop.
The idea is to write generic operations using a kit like the one presented above, and then use a type class to convert
arbitrary datatypes to and from their generic representation:

class Generic a where
 type Rep a -- a generic representation built using a kit
 to :: a -> Rep a
 from :: Rep a -> a

Section 26.6: Functors in Category Theory
A Functor is defined in category theory as a structure-preserving map (a 'homomorphism') between categories.
Specifically, (all) objects are mapped to objects, and (all) arrows are mapped to arrows, such that the category laws
are preserved.

The category in which objects are Haskell types and morphisms are Haskell functions is called Hask. So a functor
from Hask to Hask would consist of a mapping of types to types and a mapping from functions to functions.

The relationship that this category theoretic concept bears to the Haskell programming construct Functor is rather

https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Sum.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Sum.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Sum.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Sum.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Sum.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Compose.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Compose.html
https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Functor-Compose.html
https://hackage.haskell.org/package/generics-sop
https://hackage.haskell.org/package/generics-sop
https://hackage.haskell.org/package/generics-sop
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 113

direct. The mapping from types to types takes the form of a type f :: * -> *, and the mapping from functions to
functions takes the form of a function fmap :: (a -> b) -> (f a -> f b). Putting those together in a class,

class Functor (f :: * -> *) where
 fmap :: (a -> b) -> f a -> f b

fmap is an operation that takes a function (a type of morphism), :: a -> b, and maps it to another function, :: f a
-> f b. It is assumed (but left to the programmer to ensure) that instances of Functor are indeed mathematical
functors, preserving Hask's categorical structure:

fmap (id {- :: a -> a -}) == id {- :: f a -> f a -}
fmap (h . g) == fmap h . fmap g

fmap lifts a function :: a -> b into a subcategory of Hask in a way that preserves both the existence of any identity
arrows, and the associativity of composition.

The Functor class only encodes endofunctors on Hask. But in mathematics, functors can map between arbitrary
categories. A more faithful encoding of this concept would look like this:

class Category c where
 id :: c i i
 (.) :: c j k -> c i j -> c i k

class (Category c1, Category c2) => CFunctor c1 c2 f where
 cfmap :: c1 a b -> c2 (f a) (f b)

The standard Functor class is a special case of this class in which the source and target categories are both Hask.
For example,

instance Category (->) where -- Hask
 id = \x -> x
 f . g = \x -> f (g x)

instance CFunctor (->) (->) [] where
 cfmap = fmap

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 114

Chapter 27: Testing with Tasty
Section 27.1: SmallCheck, QuickCheck and HUnit
import Test.Tasty
import Test.Tasty.SmallCheck as SC
import Test.Tasty.QuickCheck as QC
import Test.Tasty.HUnit

main :: IO ()
main = defaultMain tests

tests :: TestTree
tests = testGroup "Tests" [smallCheckTests, quickCheckTests, unitTests]

smallCheckTests :: TestTree
smallCheckTests = testGroup "SmallCheck Tests"
 [SC.testProperty "String length <= 3" $
 \s -> length (take 3 (s :: String)) <= 3
 , SC.testProperty "String length <= 2" $ -- should fail
 \s -> length (take 3 (s :: String)) <= 2
]

quickCheckTests :: TestTree
quickCheckTests = testGroup "QuickCheck Tests"
 [QC.testProperty "String length <= 5" $
 \s -> length (take 5 (s :: String)) <= 5
 , QC.testProperty "String length <= 4" $ -- should fail
 \s -> length (take 5 (s :: String)) <= 4
]

unitTests :: TestTree
unitTests = testGroup "Unit Tests"
 [testCase "String comparison 1" $
 assertEqual "description" "OK" "OK"

 , testCase "String comparison 2" $ -- should fail
 assertEqual "description" "fail" "fail!"
]

Install packages:

cabal install tasty-smallcheck tasty-quickcheck tasty-hunit

Run with cabal:

cabal exec runhaskell test.hs

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 115

Chapter 28: Creating Custom Data Types
Section 28.1: Creating a data type with value constructor
parameters
Value constructors are functions that return a value of a data type. Because of this, just like any other function, they
can take one or more parameters:

data Foo = Bar String Int | Biz String

Let's check the type of the Bar value constructor.

:t Bar

prints

Bar :: String -> Int -> Foo

which proves that Bar is indeed a function.

Creating variables of our custom type
let x = Bar "Hello" 10
let y = Biz "Goodbye"

Section 28.2: Creating a data type with type parameters
Type constructors can take one or more type parameters:

data Foo a b = Bar a b | Biz a b

Type parameters in Haskell must begin with a lowercase letter. Our custom data type is not a real type yet. In order
to create values of our type, we must substitute all type parameters with actual types. Because a and b can be of
any type, our value constructors are polymorphic functions.

Creating variables of our custom type
let x = Bar "Hello" 10 -- x :: Foo [Char] Integer
let y = Biz "Goodbye" 6.0 -- y :: Fractional b => Foo [Char] b
let z = Biz True False -- z :: Foo Bool Bool

Section 28.3: Creating a simple data type
The easiest way to create a custom data type in Haskell is to use the data keyword:

data Foo = Bar | Biz

The name of the type is specified between data and =, and is called a type constructor. After = we specify all value
constructors of our data type, delimited by the | sign. There is a rule in Haskell that all type and value constructors
must begin with a capital letter. The above declaration can be read as follows:

Define a type called Foo, which has two possible values: Bar and Biz.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 116

Creating variables of our custom type
let x = Bar

The above statement creates a variable named x of type Foo. Let's verify this by checking its type.

:t x

prints

x :: Foo

Section 28.4: Custom data type with record parameters
Assume we want to create a data type Person, which has a first and last name, an age, a phone number, a street, a
zip code and a town.

We could write

data Person = Person String String Int Int String String String

If we want now to get the phone number, we need to make a function

getPhone :: Person -> Int
getPhone (Person _ _ _ phone _ _ _) = phone

Well, this is no fun. We can do better using parameters:

data Person' = Person' { firstName :: String
 , lastName :: String
 , age :: Int
 , phone :: Int
 , street :: String
 , code :: String
 , town :: String }

Now we get the function phone where

:t phone
phone :: Person' -> Int

We can now do whatever we want, eg:

printPhone :: Person' -> IO ()
printPhone = putStrLn . show . phone

We can also bind the phone number by Pattern Matching:

getPhone' :: Person' -> Int
getPhone' (Person {phone = p}) = p

For easy use of the parameters see RecordWildCards

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 117

Chapter 29: Reactive-banana
Section 29.1: Injecting external events into the library
This example is not tied to any concrete GUI toolkit, like reactive-banana-wx does, for instance. Instead it shows
how to inject arbitrary IO actions into FRP machinery.

The Control.Event.Handler module provides an addHandler function which creates a pair of AddHandler a and a
-> IO () values. The former is used by reactive-banana itself to obtain an Event a value, while the latter is a plain
function that is used to trigger the corresponding event.

import Data.Char (toUpper) import Control.Event.Handler import Reactive.Banana main = do (inputHandler,
inputFire) <- newAddHandler

In our case the a parameter of the handler is of type String, but the code that lets compiler infer that will be
written later.

Now we define the EventNetwork that describes our FRP-driven system. This is done using compile function:

main = do (inputHandler, inputFire) <- newAddHandler compile $ do inputEvent <- fromAddHandler inputHandler

The fromAddHandler function transforms AddHandler a value into a Event a, which is covered in the next example.

Finally, we launch our "event loop", that would fire events on user input:

main = do (inputHandler, inputFire) <- newAddHandler compile $ do ... forever $ do input <- getLine inputFire input

Section 29.2: Event type
In reactive-banana the Event type represents a stream of some events in time. An Event is similar to an analog
impulse signal in the sense that it is not continuous in time. As a result, Event is an instance of the Functor
typeclass only. You can't combine two Events together because they may fire at different times. You can do
something with an Event's [current] value and react to it with some IO action.

Transformations on Events value are done using fmap:

main = do (inputHandler, inputFire) <- newAddHandler compile $ do inputEvent <- fromAddHandler inputHandler --
turn all characters in the signal to upper case let inputEvent' = fmap (map toUpper) inputEvent

Reacting to an Event is done the same way. First you fmap it with an action of type a -> IO () and then pass it to
reactimate function:

main = do (inputHandler, inputFire) <- newAddHandler compile $ do inputEvent <- fromAddHandler inputHandler --
turn all characters in the signal to upper case let inputEvent' = fmap (map toUpper) inputEvent let
inputEventReaction = fmap putStrLn inputEvent' -- this has type `Event (IO ()) reactimate inputEventReaction

Now whenever inputFire "something" is called, "SOMETHING" would be printed.

Section 29.3: Actuating EventNetworks
EventNetworks returned by compile must be actuated before reactimated events have an effect.

main = do
 (inputHandler, inputFire) <- newAddHandler

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 118

 eventNetwork <- compile $ do
 inputEvent <- fromAddHandler inputHandler
 let inputEventReaction = fmap putStrLn inputEvent
 reactimate inputEventReaction

 inputFire "This will NOT be printed to the console!"
 actuate eventNetwork
 inputFire "This WILL be printed to the console!"

Section 29.4: Behavior type
To represent continious signals, reactive-banana features Behavior a type. Unlike Event, a Behavior is an
Applicative, which lets you combine n Behaviors using an n-ary pure function (using <$> and <*>).

To obtain a Behavior a from the Event a there is accumE function:

main = do
 (inputHandler, inputFire) <- newAddHandler
 compile $ do
 ...
 inputBehavior <- accumE "" $ fmap (\oldValue newValue -> newValue) inputEvent

accumE takes Behavior's initial value and an Event, containing a function that would set it to the new value.

As with Events, you can use fmap to work with current Behaviors value, but you can also combine them with (<*>).

main = do
 (inputHandler, inputFire) <- newAddHandler
 compile $ do
 ...
 inputBehavior <- accumE "" $ fmap (\oldValue newValue -> newValue) inputEvent
 inputBehavior' <- accumE "" $ fmap (\oldValue newValue -> newValue) inputEvent
 let constantTrueBehavior = (==) <$> inputBehavior <*> inputBehavior'

To react on Behavior changes there is a changes function:

main = do
 (inputHandler, inputFire) <- newAddHandler
 compile $ do
 ...
 inputBehavior <- accumE "" $ fmap (\oldValue newValue -> newValue) inputEvent
 inputBehavior' <- accumE "" $ fmap (\oldValue newValue -> newValue) inputEvent
 let constantTrueBehavior = (==) <$> inputBehavior <*> inputBehavior'
 inputChanged <- changes inputBehavior

The only thing that should be noted is that changes return Event (Future a) instead of Event a. Because of this,
reactimate' should be used instead of reactimate. The rationale behind this can be obtained from the
documentation.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 119

Chapter 30: Optimization
Section 30.1: Compiling your Program for Profiling
The GHC compiler has mature support for compiling with profiling annotations.

Using the -prof and -fprof-auto flags when compiling will add support to your binary for profiling flags for use at
runtime.

Suppose we have this program:

main = print (fib 30)
fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)

Compiled it like so:

ghc -prof -fprof-auto -rtsopts Main.hs

Then ran it with runtime system options for profiling:

./Main +RTS -p

We will see a main.prof file created post execution (once the program has exited), and this will give us all sorts of
profiling information such as cost centers which gives us a breakdown of the cost associated with running the
various parts of the code:

 Wed Oct 12 16:14 2011 Time and Allocation Profiling Report (Final)

 Main +RTS -p -RTS

 total time = 0.68 secs (34 ticks @ 20 ms)
 total alloc = 204,677,844 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

fib Main 100.0 100.0

 individual inherited
COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 102 0 0.0 0.0 100.0 100.0
 CAF GHC.IO.Handle.FD 128 0 0.0 0.0 0.0 0.0
 CAF GHC.IO.Encoding.Iconv 120 0 0.0 0.0 0.0 0.0
 CAF GHC.Conc.Signal 110 0 0.0 0.0 0.0 0.0
 CAF Main 108 0 0.0 0.0 100.0 100.0
 main Main 204 1 0.0 0.0 100.0 100.0
 fib Main 205 2692537 100.0 100.0 100.0 100.0

Section 30.2: Cost Centers
Cost centers are annotations on a Haskell program which can be added automatically by the GHC compiler -- using
-fprot-auto -- or by a programmer using {-# SCC "name" #-} <expression>, where "name" is any name you wish
and <expression> is any valid Haskell expression:

https://downloads.haskell.org/%7Eghc/latest/docs/html/users_guide/profiling.html
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 120

-- Main.hs
main :: IO ()
main = do let l = [1..9999999]
 print $ {-# SCC "print_list" #-} (length l)

Compiling with -fprof and running with +RTS -p e.g. ghc -prof -rtsopts Main.hs && ./Main.hs +RTS -p would
produce Main.prof once the program's exited.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 121

Chapter 31: Concurrency
Section 31.1: Spawning Threads with `forkIO`
Haskell supports many forms of concurrency and the most obvious being forking a thread using forkIO.

The function forkIO :: IO () -> IO ThreadId takes an IO action and returns its ThreadId, meanwhile the action
will be run in the background.

We can demonstrate this quite succinctly using ghci:

Prelude Control.Concurrent> forkIO $ (print . sum) [1..100000000]
ThreadId 290
Prelude Control.Concurrent> forkIO $ print "hi!"
"hi!"
-- some time later....
Prelude Control.Concurrent> 50000005000000

Both actions will run in the background, and the second is almost guaranteed to finish before the last!

Section 31.2: Communicating between Threads with `MVar`
It is very easy to pass information between threads using the MVar a type and its accompanying functions in
Control.Concurrent:

newEmptyMVar :: IO (MVar a) -- creates a new MVar a
newMVar :: a -> IO (MVar a) -- creates a new MVar with the given value
takeMVar :: MVar a -> IO a -- retrieves the value from the given MVar, or blocks until one is available
putMVar :: MVar a -> a -> IO () -- puts the given value in the MVar, or blocks until it's empty

Let's sum the numbers from 1 to 100 million in a thread and wait on the result:

import Control.Concurrent
main = do
 m <- newEmptyMVar
 forkIO $ putMVar m $ sum [1..10000000]
 print =<< takeMVar m -- takeMVar will block 'til m is non-empty!

A more complex demonstration might be to take user input and sum in the background while waiting for more
input:

main2 = loop
 where
 loop = do
 m <- newEmptyMVar
 n <- getLine
 putStrLn "Calculating. Please wait"
 -- In another thread, parse the user input and sum
 forkIO $ putMVar m $ sum [1..(read n :: Int)]
 -- In another thread, wait 'til the sum's complete then print it
 forkIO $ print =<< takeMVar m
 loop

As stated earlier, if you call takeMVar and the MVar is empty, it blocks until another thread puts something into the
MVar, which could result in a Dining Philosophers Problem. The same thing happens with putMVar: if it's full, it'll

https://en.wikipedia.org/wiki/Dining_philosophers_problem
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 122

block 'til it's empty!

Take the following function:

concurrent ma mb = do
 a <- takeMVar ma
 b <- takeMVar mb
 putMVar ma a
 putMVar mb b

We run the the two functions with some MVars

concurrent ma mb -- new thread 1
concurrent mb ma -- new thread 2

What could happen is that:

Thread 1 reads ma and blocks ma1.
Thread 2 reads mb and thus blocks mb2.

Now Thread 1 cannot read mb as Thread 2 has blocked it, and Thread 2 cannot read ma as Thread 1 has blocked it. A
classic deadlock!

Section 31.3: Atomic Blocks with Software Transactional
Memory
Another powerful & mature concurrency tool in Haskell is Software Transactional Memory, which allows for
multiple threads to write to a single variable of type TVar a in an atomic manner.

TVar a is the main type associated with the STM monad and stands for transactional variable. They're used much
like MVar but within the STM monad through the following functions:

atomically :: STM a -> IO a

Perform a series of STM actions atomically.

readTVar :: TVar a -> STM a

Read the TVar's value, e.g.:

value <- readTVar t

writeTVar :: TVar a -> a -> STM ()

Write a value to the given TVar.

t <- newTVar Nothing
writeTVar t (Just "Hello")

This example is taken from the Haskell Wiki:

import Control.Monad
import Control.Concurrent
import Control.Concurrent.STM

main = do
 -- Initialise a new TVar
 shared <- atomically $ newTVar 0

https://hackage.haskell.org/package/stm-2.4.4.1/docs/Control-Monad-STM.html
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 123

 -- Read the value
 before <- atomRead shared
 putStrLn $ "Before: " ++ show before
 forkIO $ 25 `timesDo` (dispVar shared >> milliSleep 20)
 forkIO $ 10 `timesDo` (appV ((+) 2) shared >> milliSleep 50)
 forkIO $ 20 `timesDo` (appV pred shared >> milliSleep 25)
 milliSleep 800
 after <- atomRead shared
 putStrLn $ "After: " ++ show after
 where timesDo = replicateM_
 milliSleep = threadDelay . (*) 1000

atomRead = atomically . readTVar
dispVar x = atomRead x >>= print
appV fn x = atomically $ readTVar x >>= writeTVar x . fn

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 124

Chapter 32: Function composition
Section 32.1: Right-to-left composition
(.) lets us compose two functions, feeding output of one as an input to the other:

(f . g) x = f (g x)

For example, if we want to square the successor of an input number, we can write

((^2) . succ) 1 -- 4

There is also (<<<) which is an alias to (.). So,

(+ 1) <<< sqrt $ 25 -- 6

Section 32.2: Composition with binary function
The regular composition works for unary functions. In the case of binary, we can define

(f .: g) x y = f (g x y) -- which is also
 = f ((g x) y)
 = (f . g x) y -- by definition of (.)
 = (f .) (g x) y
 = ((f .) . g) x y

Thus, (f .: g) = ((f .) . g) by eta-contraction, and furthermore,

(.:) f g = ((f .) . g)
 = (.) (f .) g
 = (.) ((.) f) g
 = ((.) . (.)) f g

so (.:) = ((.) . (.)), a semi-famous definition.

Examples:

(map (+1) .: filter) even [1..5] -- [3,5]
(length .: filter) even [1..5] -- 2

Section 32.3: Left-to-right composition
Control.Category defines (>>>), which, when specialized to functions, is

-- (>>>) :: Category cat => cat a b -> cat b c -> cat a c
-- (>>>) :: (->) a b -> (->) b c -> (->) a c
-- (>>>) :: (a -> b) -> (b -> c) -> (a -> c)
(f >>> g) x = g (f x)

Example:

sqrt >>> (+ 1) $ 25 -- 6.0

http://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Category.html#v:-62--62--62-
http://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Category.html#v:-62--62--62-
http://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Category.html#v:-62--62--62-
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 125

Chapter 33: Databases
Section 33.1: Postgres
Postgresql-simple is a mid-level Haskell library for communicating with a PostgreSQL backend database. It is very
simple to use and provides a type-safe API for reading/writing to a DB.

Running a simple query is as easy as:

{-# LANGUAGE OverloadedStrings #-}

import Database.PostgreSQL.Simple

main :: IO ()
main = do
 -- Connect using libpq strings
 conn <- connectPostgreSQL "host='my.dbhost' port=5432 user=bob pass=bob"
 [Only i] <- query_ conn "select 2 + 2" -- execute with no parameter substitution
 print i

Parameter substitution

PostreSQL-Simple supports parameter substitution for safe parameterised queries using query:

main :: IO ()
main = do
 -- Connect using libpq strings
 conn <- connectPostgreSQL "host='my.dbhost' port=5432 user=bob pass=bob"
 [Only i] <- query conn "select ? + ?" [1, 1]
 print i

Executing inserts or updates

You can run inserts/update SQL queries using execute:

main :: IO ()
main = do
 -- Connect using libpq strings
 conn <- connectPostgreSQL "host='my.dbhost' port=5432 user=bob pass=bob"
 execute conn "insert into people (name, age) values (?, ?)" ["Alex", 31]

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 126

Chapter 34: Data.Aeson - JSON in Haskell
Section 34.1: Smart Encoding and Decoding using Generics
The easiest and quickest way to encode a Haskell data type to JSON with Aeson is using generics.

{-# LANGUAGE DeriveGeneric #-}

import GHC.Generics
import Data.Text
import Data.Aeson
import Data.ByteString.Lazy

First let us create a data type Person:

data Person = Person { firstName :: Text
 , lastName :: Text
 , age :: Int
 } deriving (Show, Generic)

In order to use the encode and decode function from the Data.Aeson package we need to make Person an instance
of ToJSON and FromJSON. Since we derive Generic for Person, we can create empty instances for these classes. The
default definitions of the methods are defined in terms of the methods provided by the Generic type class.

instance ToJSON Person
instance FromJSON Person

Done! In order to improve the encoding speed we can slightly change the ToJSON instance:

instance ToJSON Person where
 toEncoding = genericToEncoding defaultOptions

Now we can use the encode function to convert Person to a (lazy) Bytestring:

encodeNewPerson :: Text -> Text -> Int -> ByteString
encodeNewPerson first last age = encode $ Person first last age

And to decode we can just use decode:

> encodeNewPerson "Hans" "Wurst" 30
"{\"lastName\":\"Wurst\",\"age\":30,\"firstName\":\"Hans\"}"

> decode $ encodeNewPerson "Hans" "Wurst" 30
Just (Person {firstName = "Hans", lastName = "Wurst", age = 30})

Section 34.2: A quick way to generate a Data.Aeson.Value
{-# LANGUAGE OverloadedStrings #-}
module Main where

import Data.Aeson

main :: IO ()
main = do

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 127

 let example = Data.Aeson.object ["key" .= (5 :: Integer), "somethingElse" .= (2 :: Integer)] ::
Value
 print . encode $ example

Section 34.3: Optional Fields
Sometimes, we want some fields in the JSON string to be optional. For example,

data Person = Person { firstName :: Text
 , lastName :: Text
 , age :: Maybe Int
 }

This can be achieved by

import Data.Aeson.TH

$(deriveJSON defaultOptions{omitNothingFields = True} ''Person)

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 128

Chapter 35: Higher-order functions
Section 35.1: Basics of Higher Order Functions
Review Partial Application before proceeding.

In Haskell, a function that can take other functions as arguments or return functions is called a higher-order function.

The following are all higher-order functions:

map :: (a -> b) -> [a] -> [b]
filter :: (a -> Bool) -> [a] -> [a]
takeWhile :: (a -> Bool) -> [a] -> [a]
dropWhile :: (a -> Bool) -> [a] -> [a]
iterate :: (a -> a) -> a -> [a]
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
scanr :: (a -> b -> b) -> b -> [a] -> [b]
scanl :: (b -> a -> b) -> b -> [a] -> [b]

These are particularly useful in that they allow us to create new functions on top of the ones we already have, by
passing functions as arguments to other functions. Hence the name, higher-order functions.

Consider:

Prelude> :t (map (+3))
(map (+3)) :: Num b => [b] -> [b]

Prelude> :t (map (=='c'))
(map (=='c')) :: [Char] -> [Bool]

Prelude> :t (map zipWith)
(map zipWith) :: [a -> b -> c] -> [[a] -> [b] -> [c]]

This ability to easily create functions (like e.g. by partial application as used here) is one of the features that makes
functional programming particularly powerful and allows us to derive short, elegant solutions that would otherwise
take dozens of lines in other languages. For example, the following function gives us the number of aligned
elements in two lists.

aligned :: [a] -> [a] -> Int
aligned xs ys = length (filter id (zipWith (==) xs ys))

Section 35.2: Lambda Expressions
Lambda expressions are similar to anonymous functions in other languages.

Lambda expressions are open formulas which also specify variables which are to be bound. Evaluation (finding the
value of a function call) is then achieved by substituting the bound variables in the lambda expression's body, with
the user supplied arguments. Put simply, lambda expressions allow us to express functions by way of variable
binding and substitution.

Lambda expressions look like

\x -> let {y = ...x...} in y

Within a lambda expression, the variables on the left-hand side of the arrow are considered bound in the right-

https://en.wikipedia.org/wiki/Open_formula
https://en.wikipedia.org/wiki/Lambda_calculus#Substitution
https://en.wikipedia.org/wiki/Bound_variable
https://en.wikipedia.org/wiki/Substitution_(logic)
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 129

hand side, i.e. the function's body.

Consider the mathematical function

f(x) = x^2

As a Haskell definition it is

f x = x^2

f = \x -> x^2

which means that the function f is equivalent to the lambda expression \x -> x^2.

Consider the parameter of the higher-order function map, that is a function of type a -> b. In case it is used only
once in a call to map and nowhere else in the program, it is convenient to specify it as a lambda expression instead
of naming such a throwaway function. Written as a lambda expression,

\x -> let {y = ...x...} in y

x holds a value of type a, ...x... is a Haskell expression that refers to the variable x, and y holds a value of type b.
So, for example, we could write the following

map (\x -> x + 3)

map (\(x,y) -> x * y)

map (\xs -> 'c':xs) ["apples", "oranges", "mangos"]

map (\f -> zipWith f [1..5] [1..5]) [(+), (*), (-)]

Section 35.3: Currying
In Haskell, all functions are considered curried: that is, all functions in Haskell take just one argument.

Let's take the function div:

div :: Int -> Int -> Int

If we call this function with 6 and 2 we unsurprisingly get 3:

Prelude> div 6 2 3

However, this doesn't quite behave in the way we might think. First div 6 is evaluated and returns a function of
type Int -> Int. This resulting function is then applied to the value 2 which yields 3.

When we look at the type signature of a function, we can shift our thinking from "takes two arguments of type Int"
to "takes one Int and returns a function that takes an Int". This is reaffirmed if we consider that arrows in the type
notation associate to the right, so div can in fact be read thus:

div :: Int -> (Int -> Int)

In general, most programmers can ignore this behaviour at least while they're learning the language. From a
theoretical point of view, "formal proofs are easier when all functions are treated uniformly (one argument in, one
result out)."

https://wiki.haskell.org/Currying
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 130

Chapter 36: Containers - Data.Map
Section 36.1: Importing the Module
The Data.Map module in the containers package provides a Map structure that has both strict and lazy
implementations.

When using Data.Map, one usually imports it qualified to avoid clashes with functions already defined in Prelude:

import qualified Data.Map as Map

So we'd then prepend Map function calls with Map., e.g.

Map.empty -- give me an empty Map

Section 36.2: Monoid instance
Map k v provides a Monoid instance with the following semantics:

mempty is the empty Map, i.e. the same as Map.empty
m1 <> m2 is the left-biased union of m1 and m2, i.e. if any key is present both in m1 and m2, then the value from
m1 is picked for m1 <> m2. This operation is also available outside the Monoid instance as Map.union.

Section 36.3: Constructing
We can create a Map from a list of tuples like this:

Map.fromList [("Alex", 31), ("Bob", 22)]

A Map can also be constructed with a single value:

> Map.singleton "Alex" 31 fromList [("Alex",31)]

There is also the empty function.

empty :: Map k a

Data.Map also supports typical set operations such as union, difference and intersection.

Section 36.4: Checking If Empty
We use the null function to check if a given Map is empty:

> Map.null $ Map.fromList [("Alex", 31), ("Bob", 22)] False > Map.null $ Map.empty True

Section 36.5: Finding Values
There are many querying operations on maps.

member :: Ord k => k -> Map k a -> Bool yields True if the key of type k is in Map k a:

> Map.member "Alex" $ Map.singleton "Alex" 31 True > Map.member "Jenny" $ Map.empty False

notMember is similar:

https://hackage.haskell.org/package/containers
https://hackage.haskell.org/package/containers
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#v:empty
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#v:union
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#v:union
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#v:difference
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#v:intersection
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#g:4
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 131

> Map.notMember "Alex" $ Map.singleton "Alex" 31 False > Map.notMember "Jenny" $ Map.empty True

You can also use findWithDefault :: Ord k => a -> k -> Map k a -> a to yield a default value if the key isn't
present:

Map.findWithDefault 'x' 1 (fromList [(5,'a'), (3,'b')]) == 'x' Map.findWithDefault 'x' 5 (fromList [(5,'a'), (3,'b')]) == 'a'

Section 36.6: Inserting Elements
Inserting elements is simple:

> let m = Map.singleton "Alex" 31 fromList [("Alex",31)] > Map.insert "Bob" 99 m fromList [("Alex",31),("Bob",99)]

Section 36.7: Deleting Elements
> let m = Map.fromList [("Alex", 31), ("Bob", 99)] fromList [("Alex",31),("Bob",99)] > Map.delete "Bob" m fromList
[("Alex",31)]

https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#v:findWithDefault
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#v:findWithDefault
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#v:findWithDefault
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#v:findWithDefault
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#v:findWithDefault
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#v:findWithDefault
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#v:findWithDefault
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#v:findWithDefault
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#v:findWithDefault
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#v:findWithDefault
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#v:findWithDefault
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#v:findWithDefault
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#v:findWithDefault
https://hackage.haskell.org/package/containers-0.5.7.1/docs/Data-Map-Lazy.html#g:6
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 132

Chapter 37: Fixity declarations
Declaration component Meaning
infixr the operator is right-associative
infixl the operator is left-associative
infix the operator is non-associative

optional digit binding precedence of the operator (range 0...9, default 9)
op1, ... , opn operators

Section 37.1: Associativity
infixl vs infixr vs infix describe on which sides the parens will be grouped. For example, consider the following
fixity declarations (in base)

infixl 6 -
infixr 5 :
infix 4 ==

The infixl tells us that - has left associativity, which means that 1 - 2 - 3 - 4 gets parsed as

((1 - 2) - 3) - 4

The infixr tells us that : has right associativity, which means that 1 : 2 : 3 : [] gets parsed as

1 : (2 : (3 : []))

The infix tells us that == cannot be used without us including parenthesis, which means that True == False ==
True is a syntax error. On the other hand, True == (False == True) or (True == False) == True are fine.

Operators without an explicit fixity declaration are infixl 9.

Section 37.2: Binding precedence
The number that follows the associativity information describes in what order the operators are applied. It must
always be between 0 and 9 inclusive. This is commonly referred to as how tightly the operator binds. For example,
consider the following fixity declarations (in base)

infixl 6 +
infixl 7 *

Since * has a higher binding precedence than + we read 1 * 2 + 3 as

(1 * 2) + 3

In short, the higher the number, the closer the operator will "pull" the parens on either side of it.

Remarks

Function application always binds higher than operators, so f x `op` g y must be interpreted as (f x)op(g
y) no matter what the operator `op` and its fixity declaration are.

If the binding precedence is omitted in a fixity declaration (for example we have infixl *!?) the default is 9.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 133

Section 37.3: Example declarations
infixr 5 ++

infixl 4 <*>, <*, *>, <**>

infixl 8 `shift`, `rotate`, `shiftL`, `shiftR`, `rotateL`, `rotateR`

infix 4 ==, /=, <, <=, >=, >

infix ??

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 134

Chapter 38: Web Development
Section 38.1: Servant
Servant is a library for declaring APIs at the type-level and then:

write servers (this part of servant can be considered a web framework),
obtain client functions (in haskell),
generate client functions for other programming languages,
generate documentation for your web applications
and more...

Servant has a concise yet powerful API. A simple API can be written in very few lines of code:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}

import Data.Text
import Data.Aeson.Types
import GHC.Generics
import Servant.API

data SortBy = Age | Name

data User = User {
 name :: String,
 age :: Int
} deriving (Eq, Show, Generic)

instance ToJSON User -- automatically convert User to JSON

Now we can declare our API:

type UserAPI = "users" :> QueryParam "sortby" SortBy :> Get '[JSON] [User]

which states that we wish to expose /users to GET requests with a query param sortby of type SortBy and return
JSON of type User in the response.

Now we can define our handler:

-- This is where we'd return our user data, or e.g. do a database lookup
server :: Server UserAPI
server = return [User "Alex" 31]

userAPI :: Proxy UserAPI
userAPI = Proxy

app1 :: Application
app1 = serve userAPI server

And the main method which listens on port 8081 and serves our user API:

main :: IO ()
main = run 8081 app1

http://haskell-servant.readthedocs.io/en/stable/
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 135

Note, Stack has a template for generating basic APIs in Servant, which is useful for getting up and running very
quick.

Section 38.2: Yesod
Yesod project can be created with stack new using following templates:

yesod-minimal. Simplest Yesod scaffold possible.
yesod-mongo. Uses MongoDB as DB engine.
yesod-mysql. Uses MySQL as DB engine.
yesod-postgres. Uses PostgreSQL as DB engine.
yesod-postgres-fay. Uses PostgreSQL as DB engine. Uses Fay language for front-end.
yesod-simple. Recommended template to use, if you don't need database.
yesod-sqlite. Uses SQlite as DB engine.

yesod-bin package provides yesod executable, which can be used to run development server. Note that you also
can run your application directly, so yesod tool is optional.

Application.hs contains code that dispatches requests between handlers. It also sets up database and logging
settings, if you used them.

Foundation.hs defines App type, that can be seen as an environment for all handlers. Being in HandlerT monad,
you can get this value using getYesod function.

Import.hs is a module that just re-exports commonly used stuff.

Model.hs contains Template Haskell that generates code and data types used for DB interaction. Present only if you
are using DB.

config/models is where you define your DB schema. Used by Model.hs.

config/routes defines URI's of the Web application. For each HTTP method of the route, you'd need to create a
handler named {method}{RouteR}.

static/ directory contains site's static resources. These get compiled into binary by Settings/StaticFiles.hs
module.

templates/ directory contains Shakespeare templates that are used when serving requests.

Finally, Handler/ directory contains modules that define handlers for routes.

Each handler is a HandlerT monad action based on IO. You can inspect request parameters, its body and other
information, make queries to the DB with runDB, perform arbitrary IO and return various types of content to the
user. To serve HTML, defaultLayout function is used that allows neat composition of shakespearian templates.

https://hackage.haskell.org/package/shakespeare
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 136

Chapter 39: Vectors
Section 39.1: The Data.Vector Module
The Data.Vector module provided by the vector is a high performance library for working with arrays.

Once you've imported Data.Vector, it's easy to start using a Vector:

Prelude> import Data.Vector
Prelude Data.Vector> let a = fromList [2,3,4]

Prelude Data.Vector> a
fromList [2,3,4] :: Data.Vector.Vector

Prelude Data.Vector> :t a
a :: Vector Integer

You can even have a multi-dimensional array:

Prelude Data.Vector> let x = fromList [fromList [1 .. x] | x <- [1..10]]

Prelude Data.Vector> :t x
x :: Vector (Vector Integer)

Section 39.2: Filtering a Vector
Filter odd elements:

Prelude Data.Vector> Data.Vector.filter odd y
fromList [1,3,5,7,9,11] :: Data.Vector.Vector

Section 39.3: Mapping (`map`) and Reducing (`fold`) a Vector
Vectors can be map'd and fold'd,filter'd andzip`'d:

Prelude Data.Vector> Data.Vector.map (^2) y
fromList [0,1,4,9,16,25,36,49,64,81,100,121] :: Data.Vector.Vector

Reduce to a single value:

Prelude Data.Vector> Data.Vector.foldl (+) 0 y
66

Section 39.4: Working on Multiple Vectors
Zip two arrays into an array of pairs:

Prelude Data.Vector> Data.Vector.zip y y
fromList [(0,0),(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9),(10,10),(11,11)] ::
Data.Vector.Vector

https://hackage.haskell.org/package/vector-0.11.0.0/docs/Data-Vector.html
https://hackage.haskell.org/package/vector
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 137

Chapter 40: Cabal
Section 40.1: Working with sandboxes
A Haskell project can either use the system wide packages or use a sandbox. A sandbox is an isolated package
database and can prevent dependency conflicts, e. g. if multiple Haskell projects use different versions of a
package.

To initialize a sandbox for a Haskell package go to its directory and run:

cabal sandbox init

Now packages can be installed by simply running cabal install.

Listing packages in a sandbox:

cabal sandbox hc-pkg list

Deleting a sandbox:

cabal sandbox delete

Add local dependency:

cabal sandbox add-source /path/to/dependency

Section 40.2: Install packages
To install a new package, e.g. aeson:

cabal install aeson

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 138

Chapter 41: Type algebra
Section 41.1: Addition and multiplication
The addition and multiplication have equivalents in this type algebra. They correspond to the tagged unions and
product types.

data Sum a b = A a | B b
data Prod a b = Prod a b

We can see how the number of inhabitants of every type corresponds to the operations of the algebra.

Equivalently, we can use Either and (,) as type constructors for the addition and the multiplication. They are
isomorphic to our previously defined types:

type Sum' a b = Either a b
type Prod' a b = (a,b)

The expected results of addition and multiplication are followed by the type algebra up to isomorphism. For
example, we can see an isomorphism between 1 + 2, 2 + 1 and 3; as 1 + 2 = 3 = 2 + 1.

data Color = Red | Green | Blue

f :: Sum () Bool -> Color
f (Left ()) = Red
f (Right True) = Green
f (Right False) = Blue

g :: Color -> Sum () Bool
g Red = Left ()
g Green = Right True
g Blue = Right False

f' :: Sum Bool () -> Color
f' (Right ()) = Red
f' (Left True) = Green
f' (Left False) = Blue

g' :: Color -> Sum Bool ()
g' Red = Right ()
g' Green = Left True
g' Blue = Left False

Rules of addition and multiplication

The common rules of commutativity, associativity and distributivity are valid because there are trivial isomorphisms
between the following types:

-- Commutativity
Sum a b <=> Sum b a
Prod a b <=> Prod b a
-- Associativity
Sum (Sum a b) c <=> Sum a (Sum b c)
Prod (Prod a b) c <=> Prod a (Prod b c)
-- Distributivity
Prod a (Sum b c) <=> Sum (Prod a b) (Prod a c)

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 139

Section 41.2: Functions
Functions can be seen as exponentials in our algebra. As we can see, if we take a type a with n instances and a type
b with m instances, the type a -> b will have m to the power of n instances.

As an example, Bool -> Bool is isomorphic to (Bool,Bool), as 2*2 = 2².

iso1 :: (Bool -> Bool) -> (Bool,Bool)
iso1 f = (f True,f False)

iso2 :: (Bool,Bool) -> (Bool -> Bool)
iso2 (x,y) = (\p -> if p then x else y)

Section 41.3: Natural numbers in type algebra
We can draw a connection between the Haskell types and the natural numbers. This connection can be made
assigning to every type the number of inhabitants it has.

Finite union types

For finite types, it suffices to see that we can assign a natural type to every number, based in the number of
constructors. For example:

type Color = Red | Yellow | Green

would be 3. And the Bool type would be 2.

type Bool = True | False

Uniqueness up to isomorphism

We have seen that multiple types would correspond to a single number, but in this case, they would be isomorphic.
This is to say that there would be a pair of morphisms f and g, whose composition would be the identity,
connecting the two types.

f :: a -> b
g :: b -> a

f . g == id == g . f

In this case, we would say that the types are isomorphic. We will consider two types equal in our algebra as long as
they are isomorphic.

For example, two different representations of the number two are trivally isomorphic:

type Bit = I | O
type Bool = True | False

bitValue :: Bit -> Bool
bitValue I = True
bitValue O = False

booleanBit :: Bool -> Bit
booleanBit True = I
booleanBit False = O

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 140

Because we can see bitValue . booleanBit == id == booleanBit . bitValue

One and Zero

The representation of the number 1 is obviously a type with only one constructor. In Haskell, this type is canonically
the type (), called Unit. Every other type with only one constructor is isomorphic to ().

And our representation of 0 will be a type without constructors. This is the Void type in Haskell, as defined in
Data.Void. This would be equivalent to a unhabited type, wihtout data constructors:

data Void

Section 41.4: Recursive types
Lists

Lists can be defined as:

data List a = Nil | Cons a (List a)

If we translate this into our type algebra, we get

List(a) = 1 + a * List(a)

But we can now substitute List(a) again in this expression multiple times, in order to get:

List(a) = 1 + a + a*a + a*a*a + a*a*a*a + ...

This makes sense if we see a list as a type that can contain only one value, as in []; or every value of type a, as in
[x]; or two values of type a, as in [x,y]; and so on. The theoretical definition of List that we should get from there
would be:

-- Not working Haskell code!
data List a = Nil
 | One a
 | Two a a
 | Three a a a
 ...

Trees

We can do the same thing with binary trees, for example. If we define them as:

data Tree a = Empty | Node a (Tree a) (Tree a)

We get the expression:

Tree(a) = 1 + a * Tree(a) * Tree(a)

And if we make the same substitutions again and again, we would obtain the following sequence:

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 141

Tree(a) = 1 + a + 2 (a*a) + 5 (a*a*a) + 14 (a*a*a*a) + ...

The coefficients we get here correspond to the Catalan numbers sequence, and the n-th catalan number is
precisely the number of possible binary trees with n nodes.

Section 41.5: Derivatives
The derivative of a type is the type of its type of one-hole contexts. This is the type that we would get if we make a
type variable disappear in every possible point and sum the results.

As an example, we can take the triple type (a,a,a), and derive it, obtaining

data OneHoleContextsOfTriple = (a,a,()) | (a,(),a) | ((),a,a)

This is coherent with our usual definition of derivation, as:

d/da (a*a*a) = 3*a*a

More on this topic can be read on this article.

http://strictlypositive.org/diff.pdf
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 142

Chapter 42: Arrows
Section 42.1: Function compositions with multiple channels
Arrow is, vaguely speaking, the class of morphisms that compose like functions, with both serial composition and
“parallel composition”. While it is most interesting as a generalisation of functions, the Arrow (->) instance itself is
already quite useful. For instance, the following function:

spaceAround :: Double -> [Double] -> Double
spaceAround x ys = minimum greater - maximum smaller
 where (greater, smaller) = partition (>x) ys

can also be written with arrow combinators:

spaceAround x = partition (>x) >>> minimum *** maximum >>> uncurry (-)

This kind of composition can best be visualised with a diagram:

 ──── minimum ────
 ╱ * ╲
──── partition (>x) >>> * >>> uncurry (-) ───
 ╲ * ╱
 ──── maximum ────

Here,

The >>> operator is just a flipped version of the ordinary . composition operator (there's also a <<< version
that composes right-to-left). It pipes the data from one processing step to the next.

the out-going ╱ ╲ indicate the data flow is split up in two “channels”. In terms of Haskell types, this is realised
with tuples:

partition (>x) :: [Double] -> ([Double], [Double])

splits up the flow in two [Double] channels, whereas

uncurry (-) :: (Double,Double) -> Double

merges two Double channels.

*** is the parallel† composition operator. It lets maximum and minimum operate independently on different
channels of the data. For functions, the signature of this operator is

(***) :: (b->c) -> (β->γ) -> (b,β)->(c,γ)

†At least in the Hask category (i.e. in the Arrow (->) instance), f***g does not actually compute f and g in parallel
as in, on different threads. This would theoretically be possible, though.

http://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Arrow.html#t:Arrow
http://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Arrow.html#v:-62--62--62-
http://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Arrow.html#v:-62--62--62-
http://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Arrow.html#v:-42--42--42-
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 143

Chapter 43: Typed holes
Section 43.1: Syntax of typed holes
A typed hole is a single underscore (_) or a valid Haskell identifier which is not in scope, in an expression context.
Before the existance of typed holes, both of these things would trigger an error, so the new syntax does not
interfere with any old syntax.

Controlling behaviour of typed holes

The default behaviour of typed holes is to produce a compile-time error when encountering a typed hole. However,
there are several flags to fine-tune their behaviour. These flags are summarized as follows (GHC trac):

By default GHC has typed holes enabled and produces a compile error when it encounters a typed hole.

When -fdefer-type-errors or -fdefer-typed-holes is enabled, hole errors are converted to warnings
and result in runtime errors when evaluated.

The warning flag -fwarn-typed-holes is on by default. Without -fdefer-type-errors or -fdefer-typed-
holes this flag is a no-op, since typed holes are an error under these conditions. If either of the defer flags
are enabled (converting typed hole errors into warnings) the -fno-warn-typed-holes flag disables the
warnings. This means compilation silently succeeds and evaluating a hole will produce a runtime error.

Section 43.2: Semantics of typed holes
The value of a type hole can simply said to be undefined, although a typed hole triggers a compile-time error, so it
is not strictly necessary to assign it a value. However, a typed hole (when they are enabled) produces a compile time
error (or warning with deferred type errors) which states the name of the typed hole, its inferred most general type,
and the types of any local bindings. For example:

Prelude> \x -> _var + length (drop 1 x)

<interactive>:19:7: Warning:
 Found hole `_var' with type: Int
 Relevant bindings include
 x :: [a] (bound at <interactive>:19:2)
 it :: [a] -> Int (bound at <interactive>:19:1)
 In the first argument of `(+)', namely `_var'
 In the expression: _var + length (drop 1 x)
 In the expression: \ x -> _var + length (drop 1 x)

Note that in the case of typed holes in expressions entered into the GHCi repl (as above), the type of the expression
entered also reported, as it (here of type [a] -> Int).

Section 43.3: Using typed holes to define a class instance
Typed holes can make it easier to define functions, through an interactive process.

Say you want to define a class instance Foo Bar (for your custom Bar type, in order to use it with some polymorphic
library function that requires a Foo instance). You would now traditionally look up the documentation of Foo, figure
out which methods you need to define, scrutinise their types etc. – but with typed holes, you can actually skip that!

https://ghc.haskell.org/trac/ghc/ticket/9497
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 144

First just define a dummy instance:

instance Foo Bar where

The compiler will now complain

Bar.hs:13:10: Warning:
No explicit implementation for
 ‘foom’ and ‘quun’
In the instance declaration for ‘Foo Bar’

Ok, so we need to define foom for Bar. But what is that even supposed to be? Again we're too lazy to look in the
documentation, and just ask the compiler:

instance Foo Bar where
 foom = _

Here we've used a typed hole as a simple “documentation query”. The compiler outputs

Bar.hs:14:10:
 Found hole ‘_’ with type: Bar -> Gronk Bar
 Relevant bindings include
 foom :: Bar -> Gronk Bar (bound at Foo.hs:4:28)
 In the expression: _
 In an equation for ‘foom’: foom = _
 In the instance declaration for ‘Foo Bar’

Note how the compiler has already filled the class type variable with the concrete type Bar that we want to
instantiate it for. This can make the signature a lot easier to understand than the polymorphic one found in the
class documentation, especially if you're dealing with a more complicated method of e.g. a multi-parameter type
class.

But what the hell is Gronk? At this point, it is probably a good idea to ask Hayoo. However we may still get away
without that: as a blind guess, we assume that this is not only a type constructor but also the single value
constructor, i.e. it can be used as a function that will somehow produce a Gronk a value. So we try

instance Foo Bar where
 foom bar = _ Gronk

If we're lucky, Gronk is actually a value, and the compiler will now say

 Found hole ‘_’
 with type: (Int -> [(Int, b0)] -> Gronk b0) -> Gronk Bar
 Where: ‘b0’ is an ambiguous type variable

Ok, that's ugly – at first just note that Gronk has two arguments, so we can refine our attempt:

instance Foo Bar where
 foom bar = Gronk _ _

And this now is pretty clear:

 Found hole ‘_’ with type: [(Int, Bar)]
 Relevant bindings include
 bar :: Bar (bound at Bar.hs:14:29)

http://hayoo.fh-wedel.de/?query=Gronk
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 145

 foom :: Bar -> Gronk Bar (bound at Foo.hs:15:24)
 In the second argument of ‘Gronk’, namely ‘_’
 In the expression: Gronk _ _
 In an equation for ‘foom’: foom bar = Gronk _ _

You can now further progress by e.g. deconstructing the bar value (the components will then show up, with types,
in the Relevant bindings section). Often, it is at some point completely obvious what the correct definition will be,
because you you see all avaliable arguments and the types fit together like a jigsaw puzzle. Or alternatively, you
may see that the definition is impossible and why.

All of this works best in an editor with interactive compilation, e.g. Emacs with haskell-mode. You can then use
typed holes much like mouse-over value queries in an IDE for an interpreted dynamic imperative language, but
without all the limitations.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 146

Chapter 44: Rewrite rules (GHC)
Section 44.1: Using rewrite rules on overloaded functions
In this question, @Viclib asked about using rewrite rules to exploit typeclass laws to eliminate some overloaded
function calls:

Mind the following class:

class ListIsomorphic l where
 toList :: l a -> [a]
 fromList :: [a] -> l a

I also demand that toList . fromList == id. How do I write rewrite rules to tell GHC to make that
substitution?

This is a somewhat tricky use case for GHC's rewrite rules mechanism, because overloaded functions are rewritten
into their specific instance methods by rules that are implicitly created behind the scenes by GHC (so something like
fromList :: Seq a -> [a] would be rewritten into Seq$fromList etc.).

However, by first rewriting toList and fromList into non-inlined non-typeclass methods, we can protect them from
premature rewriting, and preserve them until the rule for the composition can fire:

{-# RULES
 "protect toList" toList = toList';
 "protect fromList" fromList = fromList';
 "fromList/toList" forall x . fromList' (toList' x) = x; #-}

{-# NOINLINE [0] fromList' #-}
fromList' :: (ListIsomorphic l) => [a] -> l a
fromList' = fromList

{-# NOINLINE [0] toList' #-}
toList' :: (ListIsomorphic l) => l a -> [a]
toList' = toList

http://stackoverflow.com/q/32130011/477476
http://stackoverflow.com/a/9815210/477476
http://stackoverflow.com/a/9815210/477476
http://stackoverflow.com/a/32133083/477476
http://stackoverflow.com/a/32133083/477476
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 147

Chapter 45: Date and Time
Section 45.1: Finding Today's Date
Current date and time can be found with getCurrentTime:

import Data.Time

print =<< getCurrentTime
-- 2016-08-02 12:05:08.937169 UTC

Alternatively, just the date is returned by fromGregorian:

fromGregorian 1984 11 17 -- yields a Day

Section 45.2: Adding, Subtracting and Comparing Days
Given a Day, we can perform simple arithmetic and comparisons, such as adding:

import Data.Time

addDays 1 (fromGregorian 2000 1 1)
-- 2000-01-02
addDays 1 (fromGregorian 2000 12 31)
-- 2001-01-01

Subtract:

addDays (-1) (fromGregorian 2000 1 1)
-- 1999-12-31

addDays (-1) (fromGregorian 0 1 1)
-- -0001-12-31
-- wat

and even find the difference:

diffDays (fromGregorian 2000 12 31) (fromGregorian 2000 1 1)
365

note that the order matters:

diffDays (fromGregorian 2000 1 1) (fromGregorian 2000 12 31)
-365

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 148

Chapter 46: List Comprehensions
Section 46.1: Basic List Comprehensions
Haskell has list comprehensions, which are a lot like set comprehensions in math and similar implementations in
imperative languages such as Python and JavaScript. At their most basic, list comprehensions take the following
form.

[x | x <- someList]

For example

[x | x <- [1..4]] -- [1,2,3,4]

Functions can be directly applied to x as well:

[f x | x <- someList]

This is equivalent to:

map f someList

Example:

[x+1 | x <- [1..4]] -- [2,3,4,5]

Section 46.2: Do Notation
Any list comprehension can be correspondingly coded with list monad's do notation.

[f x | x <- xs] f <$> xs do { x <- xs ; return (f x) }

[f x | f <- fs, x <- xs] fs <*> xs do { f <- fs ; x <- xs ; return (f x) }

[y | x <- xs, y <- f x] f =<< xs do { x <- xs ; y <- f x ; return y }

The guards can be handled using Control.Monad.guard:

[x | x <- xs, even x] do { x <- xs ; guard (even x) ; return x }

Section 46.3: Patterns in Generator Expressions
However, x in the generator expression is not just variable, but can be any pattern. In cases of pattern mismatch
the generated element is skipped over, and processing of the list continues with the next element, thus acting like a
filter:

[x | Just x <- [Just 1, Nothing, Just 3]] -- [1, 3]

A generator with a variable x in its pattern creates new scope containing all the expressions on its right, where x is
defined to be the generated element.

This means that guards can be coded as

https://www.haskell.org/onlinereport/haskell2010/haskellch3.html#x8-420003.11
https://hackage.haskell.org/package/base/docs/Control-Monad.html#v:guard
https://hackage.haskell.org/package/base/docs/Control-Monad.html#v:guard
https://hackage.haskell.org/package/base/docs/Control-Monad.html#v:guard
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 149

[x | x <- [1..4], even x] ==
[x | x <- [1..4], () <- [() | even x]] ==
[x | x <- [1..4], () <- if even x then [()] else []]

Section 46.4: Guards
Another feature of list comprehensions is guards, which also act as filters. Guards are Boolean expressions and
appear on the right side of the bar in a list comprehension.

Their most basic use is

[x | p x] === if p x then [x] else []

Any variable used in a guard must appear on its left in the comprehension, or otherwise be in scope. So,

[f x | x <- list, pred1 x y, pred2 x] -- `y` must be defined in outer scope

which is equivalent to

map f (filter pred2 (filter (\x -> pred1 x y) list)) -- or,

-- ($ list) (filter (`pred1` y) >>> filter pred2 >>> map f)

-- list >>= (\x-> [x | pred1 x y]) >>= (\x-> [x | pred2 x]) >>= (\x -> [f x])

(the >>= operator is infixl 1, i.e. it associates (is parenthesized) to the left). Examples:

[x | x <- [1..4], even x] -- [2,4]

[x^2 + 1 | x <- [1..100], even x] -- map (\x -> x^2 + 1) (filter even [1..100])

Section 46.5: Parallel Comprehensions
With Parallel List Comprehensions language extension,

[(x,y) | x <- xs | y <- ys]

is equivalent to

zip xs ys

Example:

[(x,y) | x <- [1,2,3] | y <- [10,20]]

-- [(1,10),(2,20)]

Section 46.6: Local Bindings
List comprehensions can introduce local bindings for variables to hold some interim values:

[(x,y) | x <- [1..4], let y=x*x+1, even y] -- [(1,2),(3,10)]

Same effect can be achieved with a trick,

https://downloads.haskell.org/%7Eghc/latest/docs/html/users_guide/glasgow_exts.html#parallel-list-comprehensions
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 150

[(x,y) | x <- [1..4], y <- [x*x+1], even y] -- [(1,2),(3,10)]

The let in list comprehensions is recursive, as usual. But generator bindings are not, which enables shadowing:

[x | x <- [1..4], x <- [x*x+1], even x] -- [2,10]

Section 46.7: Nested Generators
List comprehensions can also draw elements from multiple lists, in which case the result will be the list of every
possible combination of the two elements, as if the two lists were processed in the nested fashion. For example,

[(a,b) | a <- [1,2,3], b <- ['a','b']]

-- [(1,'a'), (1,'b'), (2,'a'), (2,'b'), (3,'a'), (3,'b')]

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 151

Chapter 47: Streaming IO
Section 47.1: Streaming IO
io-streams is Stream-based library that focuses on the Stream abstraction but for IO. It exposes two types:

InputStream: a read-only smart handle

OutputStream: a write-only smart handle

We can create a stream with makeInputStream :: IO (Maybe a) -> IO (InputStream a). Reading from a stream
is performed using read :: InputStream a -> IO (Maybe a), where Nothing denotes an EOF:

import Control.Monad (forever)
import qualified System.IO.Streams as S
import System.Random (randomRIO)

main :: IO ()
main = do
 is <- S.makeInputStream $ randomInt -- create an InputStream
 forever $ printStream =<< S.read is -- forever read from that stream
 return ()

randomInt :: IO (Maybe Int)
randomInt = do
 r <- randomRIO (1, 100)
 return $ Just r

printStream :: Maybe Int -> IO ()
printStream Nothing = print "Nada!"
printStream (Just a) = putStrLn $ show a

https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams-Tutorial.html
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams-Tutorial.html
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams-Tutorial.html
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#g:3
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#g:3
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#g:3
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#g:3
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#g:3
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#g:3
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#g:3
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#g:3
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#g:3
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#g:3
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#g:3
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#g:3
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#g:3
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#g:3
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#g:3
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#g:3
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#g:3
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#v:read
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#v:read
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#v:read
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#v:read
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#v:read
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#v:read
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#v:read
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#v:read
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#v:read
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#v:read
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#v:read
https://hackage.haskell.org/package/io-streams-1.3.5.0/docs/System-IO-Streams.html#v:read
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 152

Chapter 48: Google Protocol Buers
Section 48.1: Creating, building and using a simple .proto file
Let us first create a simple .proto file person.proto

package Protocol;

message Person {
 required string firstName = 1;
 required string lastName = 2;
 optional int32 age = 3;
}

After saving we can now create the Haskell files which we can use in our project by running

$HOME/.local/bin/hprotoc --proto_path=. --haskell_out=. person.proto

We should get an output similar to this:

Loading filepath: "/<path-to-project>/person.proto"
All proto files loaded
Haskell name mangling done
Recursive modules resolved
./Protocol/Person.hs
./Protocol.hs
Processing complete, have a nice day.

hprotoc will create a new folder Protocol in the current directory with Person.hs which we can simply import into
our haskell project:

import Protocol (Person)

As a next step, if using Stack add

 protocol-buffers
 , protocol-buffers-descriptor

to build-depends: and

Protocol

to exposed-modules in your .cabal file.

If we get now a incoming message from a stream, the message will have the type ByteString.

In order to transform the ByteString (which obviously should contain encoded "Person" data) into our Haskell data
type, we need to call the function messageGet which we import by

import Text.ProtocolBuffers (messageGet)

which enables to create a value of type Person using:

transformRawPerson :: ByteString -> Maybe Person
transformRawPerson raw = case messageGet raw of

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 153

 Left _ -> Nothing
 Right (person, _) -> Just person

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 154

Chapter 49: Template Haskell &
QuasiQuotes
Section 49.1: Syntax of Template Haskell and Quasiquotes
Template Haskell is enabled by the -XTemplateHaskell GHC extension. This extension enables all the syntactic
features further detailed in this section. The full details on Template Haskell are given by the user guide.

Splices

A splice is a new syntactic entity enabled by Template Haskell, written as $(...), where (...) is some
expression.

There must not be a space between $ and the first character of the expression; and Template Haskell
overrides the parsing of the $ operator - e.g. f$g is normally parsed as ($) f g whereas with Template
Haskell enabled, it is parsed as a splice.

When a splice appears at the top level, the $ may be omitted. In this case, the spliced expression is the entire
line.

A splice represents code which is run at compile time to produce a Haskell AST, and that AST is compiled as
Haskell code and inserted into the program

Splices can appear in place of: expressions, patterns, types, and top-level declarations. The type of the spliced
expression, in each case respectively, is Q Exp, Q Pat, Q Type, Q [Decl]. Note that declaration splices may
only appear at the top level, whereas the others may be inside other expressions, patterns, or types,
respectively.

Expression quotations (note: not a QuasiQuotation)

An expression quotation is a new syntactic entity written as one of:

[e|..|] or [|..|] - .. is an expression and the quotation has type Q Exp;
[p|..|] - .. is a pattern and the quotation has type Q Pat;
[t|..|] - .. is a type and the quotation has type Q Type;
[d|..|] - .. is a list of declarations and the quotation has type Q [Dec].

An expression quotation takes a compile time program and produces the AST represented by that program.

The use of a value in a quotation (e.g. \x -> [| x |]) without a splice corresponds to syntactic sugar for \x
-> [| $(lift x) |], where lift :: Lift t => t -> Q Exp comes from the class

class Lift t where lift :: t -> Q Exp default lift :: Data t => t -> Q Exp Typed splices and quotations

Typed splices are similair to previously mentioned (untyped) splices, and are written as $$(..) where (..) is
an expression.

If e has type Q (TExp a) then $$e has type a.

Typed quotations take the form [||..||] where .. is an expression of type a; the resulting quotation has
type Q (TExp a).

Typed expression can be converted to untyped ones: unType :: TExp a -> Exp.

QuasiQuotes

https://downloads.haskell.org/%7Eghc/latest/docs/html/users_guide/glasgow_exts.html#template-haskell
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 155

QuasiQuotes generalize expression quotations - previously, the parser used by the expression quotation is
one of a fixed set (e,p,t,d), but QuasiQuotes allow a custom parser to be defined and used to produce code
at compile time. Quasi-quotations can appear in all the same contexts as regular quotations.

A quasi-quotation is written as [iden|...|], where iden is an identifier of type
Language.Haskell.TH.Quote.QuasiQuoter.

A QuasiQuoter is simply composed of four parsers, one for each of the different contexts in which quotations
can appear:

data QuasiQuoter = QuasiQuoter { quoteExp :: String -> Q Exp, quotePat :: String -> Q Pat, quoteType :: String -> Q
Type, quoteDec :: String -> Q [Dec] } Names

Haskell identifiers are represented by the type Language.Haskell.TH.Syntax.Name. Names form the leaves
of abstract syntax trees representing Haskell programs in Template Haskell.

An identifier which is currently in scope may be turned into a name with either: 'e or 'T. In the first case, e is
interpreted in the expression scope, while in the second case T is in the type scope (recalling that types and
value constructors may share the name without amiguity in Haskell).

Section 49.2: The Q type
The Q :: * -> * type constructor defined in Language.Haskell.TH.Syntax is an abstract type representing
computations which have access to the compile-time environment of the module in which the computation is run.
The Q type also handles variable substituion, called name capture by TH (and discussed here.) All splices have type Q
X for some X.

The compile-time environment includes:

in-scope identifiers and information about said identifiers,
types of functions
types and source data types of constructors
full specification of type declarations (classes, type families)

the location in the source code (line, column, module, package) where the splice occurs
fixities of functions (GHC 7.10)
enabled GHC extensions (GHC 8.0)

The Q type also has the ability to generate fresh names, with the function newName :: String -> Q Name. Note that
the name is not bound anywhere implicitly, so the user must bind it themselves, and so making sure the resulting
use of the name is well-scoped is the responsibility of the user.

Q has instances for Functor,Monad,Applicative and this is the main interface for manipulating Q values, along with
the combinators provided in Language.Haskell.TH.Lib, which define a helper function for every constructor of the
TH ast of the form:

LitE :: Lit -> Exp
litE :: Lit -> ExpQ

AppE :: Exp -> Exp -> Exp
appE :: ExpQ -> ExpQ -> ExpQ

Note that ExpQ, TypeQ, DecsQ and PatQ are synonyms for the AST types which are typically stored inside the Q type.

The TH library provides a function runQ :: Quasi m => Q a -> m a, and there is an instance Quasi IO, so it would

https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH-Syntax.html#namecapture
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 156

seem that the Q type is just a fancy IO. However, the use of runQ :: Q a -> IO a produces an IO action which does
not have access to any compile-time environment - this is only available in the actual Q type. Such IO actions will fail
at runtime if trying to access said environment.

Section 49.3: An n-arity curry
The familiar

curry :: ((a,b) -> c) -> a -> b -> c
curry = \f a b -> f (a,b)

function can be generalized to tuples of arbitrary arity, for example:

curry3 :: ((a, b, c) -> d) -> a -> b -> c -> d
curry4 :: ((a, b, c, d) -> e) -> a -> b -> c -> d -> e

However, writing such functions for tuples of arity 2 to (e.g.) 20 by hand would be tedious (and ignoring the fact that
the presence of 20 tuples in your program almost certainly signal design issues which should be fixed with records).

We can use Template Haskell to produce such curryN functions for arbitrary n:

{-# LANGUAGE TemplateHaskell #-}
import Control.Monad (replicateM)
import Language.Haskell.TH (ExpQ, newName, Exp(..), Pat(..))
import Numeric.Natural (Natural)

curryN :: Natural -> Q Exp

The curryN function takes a natural number, and produces the curry function of that arity, as a Haskell AST.

curryN n = do
 f <- newName "f"
 xs <- replicateM (fromIntegral n) (newName "x")

First we produces fresh type variables for each of the arguments of the function - one for the input function, and
one for each of the arguments to said function.

 let args = map VarP (f:xs)

The expression args represents the pattern f x1 x2 .. xn. Note that a pattern is separate syntactic entity - we
could take this same pattern and place it in a lambda, or a function binding, or even the LHS of a let binding (which
would be an error).

 ntup = TupE (map VarE xs)

The function must build the argument tuple from the sequence of arguments, which is what we've done here. Note
the distinction between pattern variables (VarP) and expression variables (VarE).

 return $ LamE args (AppE (VarE f) ntup)

Finally, the value which we produce is the AST \f x1 x2 .. xn -> f (x1, x2, .. , xn).

We could have also written this function using quotations and 'lifted' constructors:

...

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 157

import Language.Haskell.TH.Lib

curryN' :: Natural -> ExpQ
curryN' n = do
 f <- newName "f"
 xs <- replicateM (fromIntegral n) (newName "x")
 lamE (map varP (f:xs))
 [| $(varE f) $(tupE (map varE xs)) |]

Note that quotations must be syntactically valid, so [| \ $(map varP (f:xs)) -> .. |] is invalid, because there is
no way in regular Haskell to declare a 'list' of patterns - the above is interpreted as \ var -> .. and the spliced
expression is expected to have type PatQ, i.e. a single pattern, not a list of patterns.

Finally, we can load this TH function in GHCi:

>:set -XTemplateHaskell
>:t $(curryN 5)
$(curryN 5)
 :: ((t1, t2, t3, t4, t5) -> t) -> t1 -> t2 -> t3 -> t4 -> t5 -> t
>$(curryN 5) (\(a,b,c,d,e) -> a+b+c+d+e) 1 2 3 4 5
15

This example is adapted primarily from here.

https://wiki.haskell.org/A_practical_Template_Haskell_Tutorial
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 158

Chapter 50: Phantom types
Section 50.1: Use Case for Phantom Types: Currencies
Phantom types are useful for dealing with data, that has identical representations but isn't logically of the same
type.

A good example is dealing with currencies. If you work with currencies you absolutely never want to e.g. add two
amounts of different currencies. What would the result currency of 5.32€ + 2.94$ be? It's not defined and there is
no good reason to do this.

A solution to this could look something like this:

{-# LANGUAGE GeneralizedNewtypeDeriving #-}

data USD
data EUR

newtype Amount a = Amount Double
 deriving (Show, Eq, Ord, Num)

The GeneralisedNewtypeDeriving extension allows us to derive Num for the Amount type. GHC reuses Double's Num
instance.

Now if you represent Euro amounts with e.g. (5.0 :: Amount EUR) you have solved the problem of keeping double
amounts separate at the type level without introducing overhead. Stuff like (1.13 :: Amount EUR) + (5.30 ::
Amount USD) will result in a type error and require you to deal with currency conversion appropriately.

More comprehensive documentation can be found in the haskell wiki article

https://wiki.haskell.org/Phantom_type
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 159

Chapter 51: Modules
Section 51.1: Defining Your Own Module
If we have a file called Business.hs, we can define a Business module that can be import-ed, like so:

module Business (
 Person (..), -- ^ Export the Person type and all its constructors and field names
 employees -- ^ Export the employees function
) where
-- begin types, function definitions, etc

A deeper hierarchy is of course possible; see the Hierarchical module names example.

Section 51.2: Exporting Constructors
To export the type and all its constructors, one must use the following syntax:

module X (Person (..)) where

So, for the following top-level definitions in a file called People.hs:

data Person = Friend String | Foe deriving (Show, Eq, Ord)

isFoe Foe = True
isFoe _ = False

This module declaration at the top:

module People (Person (..)) where

would only export Person and its constructors Friend and Foe.

If the export list following the module keyword is omitted, all of the names bound at the top level of the module
would be exported:

module People where

would export Person, its constructors, and the isFoe function.

Section 51.3: Importing Specific Members of a Module
Haskell supports importing a subset of items from a module.

import qualified Data.Stream (map) as D

would only import map from Data.Stream, and calls to this function would require D.:

D.map odd [1..]

otherwise the compiler will try to use Prelude's map function.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 160

Section 51.4: Hiding Imports
Prelude often defines functions whose names are used elsewhere. Not hiding such imports (or using qualified
imports where clashes occur) will cause compilation errors.

Data.Stream defines functions named map, head and tail which normally clashes with those defined in Prelude. We
can hide those imports from Prelude using hiding:

import Data.Stream -- everything from Data.Stream
import Prelude hiding (map, head, tail, scan, foldl, foldr, filter, dropWhile, take) -- etc

In reality, it would require too much code to hide Prelude clashes like this, so you would in fact use a qualified
import of Data.Stream instead.

Section 51.5: Qualifying Imports
When multiple modules define the same functions by name, the compiler will complain. In such cases (or to
improve readability), we can use a qualified import:

import qualified Data.Stream as D

Now we can prevent ambiguity compiler errors when we use map, which is defined in Prelude and Data.Stream:

map (== 1) [1,2,3] -- will use Prelude.map
D.map (odd) (fromList [1..]) -- will use Data.Stream.map

It is also possible to import a module with only the clashing names being qualified via import Data.Text as T,
which allows one to have Text instead of T.Text etc.

Section 51.6: Hierarchical module names
The names of modules follow the filesystem's hierarchical structure. With the following file layout:

Foo/
├── Baz/
│ └── Quux.hs
└── Bar.hs
Foo.hs
Bar.hs

the module headers would look like this:

-- file Foo.hs
module Foo where

-- file Bar.hs
module Bar where

-- file Foo/Bar.hs
module Foo.Bar where

-- file Foo/Baz/Quux.hs
module Foo.Baz.Quux where

Note that:

https://hackage.haskell.org/package/Stream-0.4.7.2/docs/Data-Stream.html
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 161

the module name is based on the path of the file declaring the module
Folders may share a name with a module, which gives a naturally hierarchical naming structure to modules

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 162

Chapter 52: Tuples (Pairs, Triples, ...)
Section 52.1: Extract tuple components
Use the fst and snd functions (from Prelude or Data.Tuple) to extract the first and second component of pairs.

fst (1, 2) -- evaluates to 1

snd (1, 2) -- evaluates to 2

Or use pattern matching.

case (1, 2) of (result, _) => result -- evaluates to 1

case (1, 2) of (_, result) => result -- evaluates to 2

Pattern matching also works for tuples with more than two components.

case (1, 2, 3) of (result, _, _) => result -- evaluates to 1

case (1, 2, 3) of (_, result, _) => result -- evaluates to 2

case (1, 2, 3) of (_, _, result) => result -- evaluates to 3

Haskell does not provide standard functions like fst or snd for tuples with more than two components. The tuple
library on Hackage provides such functions in the Data.Tuple.Select module.

Section 52.2: Strictness of matching a tuple
The pattern (p1, p2) is strict in the outermost tuple constructor, which can lead to unexpected strictness
behaviour. For example, the following expression diverges (using Data.Function.fix):

fix $ \(x, y) -> (1, 2)

since the match on (x, y) is strict in the tuple constructor. However, the following expression, using an irrefutable
pattern, evaluates to (1, 2) as expected:

fix $ \ ~(x, y) -> (1, 2)

Section 52.3: Construct tuple values
Use parentheses and commas to create tuples. Use one comma to create a pair.

(1, 2)

Use more commas to create tuples with more components.

(1, 2, 3)

(1, 2, 3, 4)

Note that it is also possible to declare tuples using in their unsugared form.

https://hackage.haskell.org/package/tuple
https://hackage.haskell.org/package/tuple/docs/Data-Tuple-Select.html
http://stackoverflow.com/q/39159825/477476
http://stackoverflow.com/q/39159825/477476
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 163

(,) 1 2 -- equivalent to (1,2)
(,,) 1 2 3 -- equivalent to (1,2,3)

Tuples can contain values of different types.

("answer", 42, '?')

Tuples can contain complex values such as lists or more tuples.

([1, 2, 3], "hello", ('A', 65))

(1, (2, (3, 4), 5), 6)

Section 52.4: Write tuple types
Use parentheses and commas to write tuple types. Use one comma to write a pair type.

(Int, Int)

Use more commas to write tuple types with more components.

(Int, Int, Int)

(Int, Int, Int, Int)

Tuples can contain values of different types.

(String, Int, Char)

Tuples can contain complex values such as lists or more tuples.

([Int], String, (Char, Int))

(Int, (Int, (Int, Int), Int), Int)

Section 52.5: Pattern Match on Tuples
Pattern matching on tuples uses the tuple constructors. To match a pair for example, we'd use the (,) constructor:

myFunction1 (a, b) = ...

We use more commas to match tuples with more components:

myFunction2 (a, b, c) = ...

myFunction3 (a, b, c, d) = ...

Tuple patterns can contain complex patterns such as list patterns or more tuple patterns.

myFunction4 ([a, b, c], d, e) = ...

myFunction5 (a, (b, (c, d), e), f) = ...

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 164

Section 52.6: Apply a binary function to a tuple (uncurrying)
Use the uncurry function (from Prelude or Data.Tuple) to convert a binary function to a function on tuples.

uncurry (+) (1, 2) -- computes 3

uncurry map (negate, [1, 2, 3]) -- computes [-1, -2, -3]

uncurry uncurry ((+), (1, 2)) -- computes 3

map (uncurry (+)) [(1, 2), (3, 4), (5, 6)] -- computes [3, 7, 11]

uncurry (curry f) -- computes the same as f

Section 52.7: Apply a tuple function to two arguments
(currying)
Use the curry function (from Prelude or Data.Tuple) to convert a function that takes tuples to a function that takes
two arguments.

curry fst 1 2 -- computes 1

curry snd 1 2 -- computes 2

curry (uncurry f) -- computes the same as f

import Data.Tuple (swap)
curry swap 1 2 -- computes (2, 1)

Section 52.8: Swap pair components
Use swap (from Data.Tuple) to swap the components of a pair.

import Data.Tuple (swap)
swap (1, 2) -- evaluates to (2, 1)

Or use pattern matching.

case (1, 2) of (x, y) => (y, x) -- evaluates to (2, 1)

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 165

Chapter 53: Graphics with Gloss
Section 53.1: Installing Gloss
Gloss is easily installed using the Cabal tool. Having installed Cabal, one can run cabal install gloss to install
Gloss.

Alternatively the package can be built from source, by downloading the source from Hackage or GitHub, and doing
the following:

Enter the gloss/gloss-rendering/ directory and do cabal install1.
Enter the gloss/gloss/ directory and once more do cabal install2.

Section 53.2: Getting something on the screen
In Gloss, one can use the display function to create very simple static graphics.

To use this one needs to first import Graphics.Gloss. Then in the code there should the following:

main :: IO ()
main = display window background drawing

window is of type Display which can be constructed in two ways:

-- Defines window as an actual window with a given name and size
window = InWindow name (width, height) (0,0)

-- Defines window as a fullscreen window
window = FullScreen

Here the last argument (0,0) in InWindow marks the location of the top left corner.

For versions older than 1.11: In older versions of Gloss FullScreen takes another argument which is meant to be
the size of the frame that gets drawn on which in turn gets stretched to fullscreen-size, for example: FullScreen
(1024,768)

background is of type Color. It defines the background color, so it's as simple as:

background = white

Then we get to the drawing itself. Drawings can be very complex. How to specify these will be covered elsewhere
([one can refer to this for the moment][1]), but it can be as simple as the following circle with a radius of 80:

drawing = Circle 80

Summarizing example

As more or less stated in the documentation on Hackage, getting something on the screen is as easy as:

import Graphics.Gloss

main :: IO ()
main = display window background drawing
 where
 window = InWindow "Nice Window" (200, 200) (0, 0)

https://hackage.haskell.org/package/gloss
https://github.com/benl23x5/gloss
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 166

 background = white
 drawing = Circle 80

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 167

Chapter 54: State Monad
State monads are a kind of monad that carry a state that might change during each computation run in the monad.
Implementations are usually of the form State s a which represents a computation that carries and potentially
modifies a state of type s and produces a result of type a, but the term "state monad" may generally refer to any
monad which carries a state. The mtl and transformers package provide general implementations of state
monads.

Section 54.1: Numbering the nodes of a tree with a counter
We have a tree data type like this:

data Tree a = Tree a [Tree a] deriving Show

And we wish to write a function that assigns a number to each node of the tree, from an incrementing counter:

tag :: Tree a -> Tree (a, Int)

The long way

First we'll do it the long way around, since it illustrates the State monad's low-level mechanics quite nicely.

import Control.Monad.State

-- Function that numbers the nodes of a `Tree`.
tag :: Tree a -> Tree (a, Int)
tag tree =
 -- tagStep is where the action happens. This just gets the ball
 -- rolling, with `0` as the initial counter value.
 evalState (tagStep tree) 0

-- This is one monadic "step" of the calculation. It assumes that
-- it has access to the current counter value implicitly.
tagStep :: Tree a -> State Int (Tree (a, Int))
tagStep (Tree a subtrees) = do
 -- The `get :: State s s` action accesses the implicit state
 -- parameter of the State monad. Here we bind that value to
 -- the variable `counter`.
 counter <- get

 -- The `put :: s -> State s ()` sets the implicit state parameter
 -- of the `State` monad. The next `get` that we execute will see
 -- the value of `counter + 1` (assuming no other puts in between).
 put (counter + 1)

 -- Recurse into the subtrees. `mapM` is a utility function
 -- for executing a monadic actions (like `tagStep`) on a list of
 -- elements, and producing the list of results. Each execution of
 -- `tagStep` will be executed with the counter value that resulted
 -- from the previous list element's execution.
 subtrees' <- mapM tagStep subtrees

 return $ Tree (a, counter) subtrees'

Refactoring
Split out the counter into a postIncrement action

The bit where we are getting the current counter and then putting counter + 1 can be split off into a postIncrement

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 168

action, similar to what many C-style languages provide:

postIncrement :: Enum s => State s s
postIncrement = do
 result <- get
 modify succ
 return result

Split out the tree walk into a higher-order function

The tree walk logic can be split out into its own function, like this:

mapTreeM :: Monad m => (a -> m b) -> Tree a -> m (Tree b)
mapTreeM action (Tree a subtrees) = do
 a' <- action a
 subtrees' <- mapM (mapTreeM action) subtrees
 return $ Tree a' subtrees'

With this and the postIncrement function we can rewrite tagStep:

tagStep :: Tree a -> State Int (Tree (a, Int))
tagStep = mapTreeM step
 where step :: a -> State Int (a, Int)
 step a = do
 counter <- postIncrement
 return (a, counter)

Use the Traversable class

The mapTreeM solution above can be easily rewritten into an instance of the Traversable class:

instance Traversable Tree where
 traverse action (Tree a subtrees) =
 Tree <$> action a <*> traverse action subtrees

Note that this required us to use Applicative (the <*> operator) instead of Monad.

With that, now we can write tag like a pro:

tag :: Traversable t => t a -> t (a, Int)
tag init t = evalState (traverse step t) 0
 where step a = do tag <- postIncrement
 return (a, tag)

Note that this works for any Traversable type, not just our Tree type!

Getting rid of the Traversable boilerplate

GHC has a DeriveTraversable extension that eliminates the need for writing the instance above:

{-# LANGUAGE DeriveFunctor, DeriveFoldable, DeriveTraversable #-}

data Tree a = Tree a [Tree a]
 deriving (Show, Functor, Foldable, Traversable)

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 169

Chapter 55: Pipes
Section 55.1: Producers
A Producer is some monadic action that can yield values for downstream consumption:

type Producer b = Proxy X () () b
yield :: Monad m => a -> Producer a m ()

For example:

naturals :: Monad m => Producer Int m ()
naturals = each [1..] -- each is a utility function exported by Pipes

We can of course have Producers that are functions of other values too:

naturalsUntil :: Monad m => Int -> Producer Int m ()
naturalsUntil n = each [1..n]

Section 55.2: Connecting Pipes
Use >-> to connect Producers, Consumers and Pipes to compose larger Pipe functions.

printNaturals :: MonadIO m => Effect m ()
printNaturals = naturalsUntil 10 >-> intToStr >-> fancyPrint

Producer, Consumer, Pipe, and Effect types are all defined in terms of the general Proxy type. Therefore >-> can be
used for a variety of purposes. Types defined by the left argument must match the type consumed by the right
argument:

(>->) :: Monad m => Producer b m r -> Consumer b m r -> Effect m r
(>->) :: Monad m => Producer b m r -> Pipe b c m r -> Producer c m r
(>->) :: Monad m => Pipe a b m r -> Consumer b m r -> Consumer a m r
(>->) :: Monad m => Pipe a b m r -> Pipe b c m r -> Pipe a c m r

Section 55.3: Pipes
Pipes can both await and yield.

type Pipe a b = Proxy () a () b

This Pipe awaits an Int and converts it to a String:

intToStr :: Monad m => Pipe Int String m ()
intToStr = forever $ await >>= (yield . show)

Section 55.4: Running Pipes with runEect
We use runEffect to run our Pipe:

main :: IO ()
main = do
 runEffect $ naturalsUntil 10 >-> intToStr >-> fancyPrint

https://hackage.haskell.org/package/pipes-4.2.0/docs/Pipes.html#v:-62--45--62-
https://hackage.haskell.org/package/pipes-4.2.0/docs/Pipes.html#v:-62--45--62-
https://hackage.haskell.org/package/pipes-4.2.0/docs/Pipes.html#g:4
https://hackage.haskell.org/package/pipes-4.2.0/docs/Pipes.html#v:runEffect
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 170

Note that runEffect requires an Effect, which is a self-contained Proxy with no inputs or outputs:

runEffect :: Monad m => Effect m r -> m r
type Effect = Proxy X () () X

(where X is the empty type, also known as Void).

Section 55.5: Consumers
A Consumer can only await values from upstream.

type Consumer a = Proxy () a () X
await :: Monad m => Consumer a m a

For example:

fancyPrint :: MonadIO m => Consumer String m ()
fancyPrint = forever $ do
 numStr <- await
 liftIO $ putStrLn ("I received: " ++ numStr)

Section 55.6: The Proxy monad transformer
pipes's core data type is the Proxy monad transformer. Pipe, Producer, Consumer and so on are defined in terms of
Proxy.

Since Proxy is a monad transformer, definitions of Pipes take the form of monadic scripts which await and yield
values, additionally performing effects from the base monad m.

Section 55.7: Combining Pipes and Network communication
Pipes supports simple binary communication between a client and a server

In this example:

a client connects and sends a FirstMessage1.
the server receives and answers DoSomething 02.
the client receives and answers DoNothing3.
step 2 and 3 are repeated indefinitely4.

The command data type exchanged over the network:

-- Command.hs
{-# LANGUAGE DeriveGeneric #-}
module Command where
import Data.Binary
import GHC.Generics (Generic)

data Command = FirstMessage
 | DoNothing
 | DoSomething Int
 deriving (Show,Generic)

instance Binary Command

Here, the server waits for a client to connect:

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 171

module Server where

import Pipes
import qualified Pipes.Binary as PipesBinary
import qualified Pipes.Network.TCP as PNT
import qualified Command as C
import qualified Pipes.Parse as PP
import qualified Pipes.Prelude as PipesPrelude

pageSize :: Int
pageSize = 4096

-- pure handler, to be used with PipesPrelude.map
pureHandler :: C.Command -> C.Command
pureHandler c = c -- answers the same command that we have receveid

-- impure handler, to be used with PipesPremude.mapM
sideffectHandler :: MonadIO m => C.Command -> m C.Command
sideffectHandler c = do
 liftIO $ putStrLn $ "received message = " ++ (show c)
 return $ C.DoSomething 0
 -- whatever incoming command `c` from the client, answer DoSomething 0

main :: IO ()
main = PNT.serve (PNT.Host "127.0.0.1") "23456" $
 \(connectionSocket, remoteAddress) -> do
 putStrLn $ "Remote connection from ip = " ++ (show remoteAddress)
 _ <- runEffect $ do
 let bytesReceiver = PNT.fromSocket connectionSocket pageSize
 let commandDecoder = PP.parsed PipesBinary.decode bytesReceiver
 commandDecoder >-> PipesPrelude.mapM sideffectHandler >-> for cat
PipesBinary.encode >-> PNT.toSocket connectionSocket
 -- if we want to use the pureHandler
 --commandDecoder >-> PipesPrelude.map pureHandler >-> for cat PipesBinary.Encode
>-> PNT.toSocket connectionSocket
 return ()

The client connects thus:

module Client where

import Pipes
import qualified Pipes.Binary as PipesBinary
import qualified Pipes.Network.TCP as PNT
import qualified Pipes.Prelude as PipesPrelude
import qualified Pipes.Parse as PP
import qualified Command as C

pageSize :: Int
pageSize = 4096

-- pure handler, to be used with PipesPrelude.amp
pureHandler :: C.Command -> C.Command
pureHandler c = c -- answer the same command received from the server

-- inpure handler, to be used with PipesPremude.mapM
sideffectHandler :: MonadIO m => C.Command -> m C.Command
sideffectHandler c = do
 liftIO $ putStrLn $ "Received: " ++ (show c)
 return C.DoNothing -- whatever is received from server, answer DoNothing

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 172

main :: IO ()
main = PNT.connect ("127.0.0.1") "23456" $
 \(connectionSocket, remoteAddress) -> do
 putStrLn $ "Connected to distant server ip = " ++ (show remoteAddress)
 sendFirstMessage connectionSocket
 _ <- runEffect $ do
 let bytesReceiver = PNT.fromSocket connectionSocket pageSize
 let commandDecoder = PP.parsed PipesBinary.decode bytesReceiver
 commandDecoder >-> PipesPrelude.mapM sideffectHandler >-> for cat PipesBinary.encode >->
PNT.toSocket connectionSocket
 return ()

sendFirstMessage :: PNT.Socket -> IO ()
sendFirstMessage s = do
 _ <- runEffect $ do
 let encodedProducer = PipesBinary.encode C.FirstMessage
 encodedProducer >-> PNT.toSocket s
 return ()

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 173

Chapter 56: Infix operators
Section 56.1: Prelude
Logical

&& is logical AND, || is logical OR.

== is equality, /= non-equality, < / <= lesser and > / >= greater operators.

Arithmetic operators

The numerical operators +, - and / behave largely as you'd expect. (Division works only on fractional numbers to
avoid rounding issues – integer division must be done with quot or div). More unusual are Haskell's three
exponentiation operators:

^ takes a base of any number type to a non-negative, integral power. This works simply by (fast) iterated
multiplication. E.g.

4^5 ≡ (4*4)*(4*4)*4

^^ does the same in the positive case, but also works for negative exponents. E.g.

3^^(-2) ≡ 1 / (2*2)

Unlike ^, this requires a fractional base type (i.e. 4^^5 :: Int will not work, only 4^5 :: Int or 4^^5 ::
Rational).

** implements real-number exponentiation. This works for very general arguments, but is more
computionally expensive than ^ or ^^, and generally incurs small floating-point errors.

2**pi ≡ exp (pi * log 2)

Lists

There are two concatenation operators:

: (pronounced cons) prepends a single argument before a list. This operator is actually a constructor and can
thus also be used to pattern match (“inverse construct”) a list.

++ concatenates entire lists.

[1,2] ++ [3,4] ≡ 1 : 2 : [3,4] ≡ 1 : [2,3,4] ≡ [1,2,3,4]

!! is an indexing operator.

[0, 10, 20, 30, 40] !! 3 ≡ 30

Note that indexing lists is inefficient (complexity O(n) instead of O(1) for arrays or O(log n) for maps); it's generally
preferred in Haskell to deconstruct lists by folding ot pattern matching instead of indexing.

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#v:-38--38-
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#v:-124--124-
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#v:-61--61-
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#v:-47--61-
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#v:-60-
http://hackage.haskell.org/package/base/docs/Prelude.html#v:-43-
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#v:-45-
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#v:-47-
http://hackage.haskell.org/package/base/docs/Prelude.html#v:quot
http://hackage.haskell.org/package/base/docs/Prelude.html#v:div
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#v:-94-
https://en.wikipedia.org/wiki/Exponentiation_by_squaring
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#v:-94-
http://hackage.haskell.org/package/base/docs/Prelude.html#v:-42--42-
https://en.wikipedia.org/wiki/Cons
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#v:-43--43-
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#v:-33--33-
http://hackage.haskell.org/package/vector/docs/Data-Vector.html
http://hackage.haskell.org/package/containers/docs/Data-Map.html
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 174

Control flow

$ is a function application operator.

f $ x ≡ f x
 ≡ f(x) -- disapproved style

This operator is mostly used to avoid parentheses. It also has a strict version $!, which forces the argument
to be evaluated before applying the function.

. composes functions.

(f . g) x ≡ f (g x) ≡ f $ g x

>> sequences monadic actions. E.g. writeFile "foo.txt" "bla" >> putStrLn "Done." will first write to a
file, then print a message to the screen.

>>= does the same, while also accepting an argument to be passed from the first action to the following.
readLn >>= \x -> print (x^2) will wait for the user to input a number, then output the square of that
number to the screen.

Section 56.2: Finding information about infix operators
Because infixes are so common in Haskell, you will regularly need to look up their signature etc.. Fortunately, this is
just as easy as for any other function:

The Haskell search engines Hayoo and Hoogle can be used for infix operators, like for anything else that's
defined in some library.

In GHCi or IHaskell, you can use the :i and :t (info and type) directives to learn the basic properties of an
operator. For example,

Prelude> :i +
class Num a where
 (+) :: a -> a -> a
 ...
 -- Defined in ‘GHC.Num’
infixl 6 +
Prelude> :i ^^
(^^) :: (Fractional a, Integral b) => a -> b -> a
 -- Defined in ‘GHC.Real’
infixr 8 ^^

This tells me that ^^ binds more tightly than +, both take numerical types as their elements, but ^^ requires
the exponent to be integral and the base to be fractional.
The less verbose :t requires the operator in parentheses, like

Prelude> :t (==)
(==) :: Eq a => a -> a -> Bool

Section 56.3: Custom operators
In Haskell, you can define any infix operator you like. For example, I could define the list-enveloping operator as

http://hackage.haskell.org/package/base/docs/Prelude.html#v:-36-
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#v:-36--33-
http://hackage.haskell.org/package/base/docs/Prelude.html#v:-36-
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#v:-62--62-
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#v:-62--62--61-
https://hayoo.fh-wedel.de/
https://www.haskell.org/hoogle/
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 175

(>+<) :: [a] -> [a] -> [a]
env >+< l = env ++ l ++ env

GHCi> "**">+<"emphasis"
"**emphasis**"

You should always give such operators a fixity declaration, like

infixr 5 >+<

(which would mean >+< binds as tightly as ++ and : do).

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 176

Chapter 57: Parallelism
Type/Function Detail

data Eval a Eval is a Monad that makes it easier to define parallel strategies

type Strategy a = a -> Eval
a

a function that embodies a parallel evaluation strategy. The function traverses
(parts of) its argument, evaluating subexpressions in parallel or in sequence

rpar :: Strategy a sparks its argument (for evaluation in parallel)
rseq :: Strategy a evaluates its argument to weak head normal form

force :: NFData a => a -> a evaluates the entire structure of its argument, reducing it to normal form, before
returning the argument itself. It is provided by the Control.DeepSeq module

Section 57.1: The Eval Monad
Parallelism in Haskell can be expressed using the Eval Monad from Control.Parallel.Strategies, using the rpar
and rseq functions (among others).

f1 :: [Int]
f1 = [1..100000000]

f2 :: [Int]
f2 = [1..200000000]

main = runEval $ do
 a <- rpar (f1) -- this'll take a while...
 b <- rpar (f2) -- this'll take a while and then some...
 return (a,b)

Running main above will execute and "return" immediately, while the two values, a and b are computed in the
background through rpar.

Note: ensure you compile with -threaded for parallel execution to occur.

Section 57.2: rpar
rpar :: Strategy a executes the given strategy (recall: type Strategy a = a -> Eval a) in parallel:

import Control.Concurrent
import Control.DeepSeq
import Control.Parallel.Strategies
import Data.List.Ordered

main = loop
 where
 loop = do
 putStrLn "Enter a number"
 n <- getLine

 let lim = read n :: Int
 hf = quot lim 2
 result = runEval $ do
 -- we split the computation in half, so we can concurrently calculate primes
 as <- rpar (force (primesBtwn 2 hf))
 bs <- rpar (force (primesBtwn (hf + 1) lim))
 return (as ++ bs)

 forkIO $ putStrLn ("\nPrimes are: " ++ (show result) ++ " for " ++ n ++ "\n")

https://hackage.haskell.org/package/parallel-3.2.1.0/docs/Control-Parallel-Strategies.html#t:Eval
https://hackage.haskell.org/package/parallel-3.2.1.0/docs/Control-Parallel-Strategies.html#t:Eval
https://hackage.haskell.org/package/parallel-3.2.1.0/docs/Control-Parallel-Strategies.html#g:1
https://hackage.haskell.org/package/parallel-3.2.1.0/docs/Control-Parallel-Strategies.html#g:1
https://hackage.haskell.org/package/parallel-3.2.1.0/docs/Control-Parallel-Strategies.html#g:1
https://hackage.haskell.org/package/parallel-3.2.1.0/docs/Control-Parallel-Strategies.html#g:1
https://hackage.haskell.org/package/parallel-3.2.1.0/docs/Control-Parallel-Strategies.html#g:1
https://hackage.haskell.org/package/parallel-3.2.1.0/docs/Control-Parallel-Strategies.html#g:1
https://hackage.haskell.org/package/parallel-3.2.1.0/docs/Control-Parallel-Strategies.html#g:1
https://hackage.haskell.org/package/parallel-3.2.1.0/docs/Control-Parallel-Strategies.html
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 177

 loop

-- Compute primes between two integers
-- Deliberately inefficient for demonstration purposes
primesBtwn n m = eratos [n..m]
 where
 eratos [] = []
 eratos (p:xs) = p : eratos (xs `minus` [p, p+p..])

Running this will demonstrate the concurrent behaviour:

Enter a number
12
Enter a number

Primes are: [2,3,5,7,8,9,10,11,12] for 12

100
Enter a number

Primes are:
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,
70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100] for
100

200000000
Enter a number
-- waiting for 200000000
200
Enter a number

Primes are:
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,102,103,104,105,106,107
,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,13
2,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,1
57,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,
182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200] for 200

-- still waiting for 200000000

Section 57.3: rseq
We can use rseq :: Strategy a to force an argument to Weak Head Normal Form:

f1 :: [Int]
f1 = [1..100000000]

f2 :: [Int]
f2 = [1..200000000]

main = runEval $ do
 a <- rpar (f1) -- this'll take a while...
 b <- rpar (f2) -- this'll take a while and then some...
 rseq a
 return (a,b)

This subtly changes the semantics of the rpar example; whereas the latter would return immediately whilst
computing the values in the background, this example will wait until a can be evaluated to WHNF.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 178

Chapter 58: Parsing HTML with taggy-lens
and lens
Section 58.1: Filtering elements from the tree
Find div with id="article" and strip out all the inner script tags.

#!/usr/bin/env stack
-- stack --resolver lts-7.1 --install-ghc runghc --package text --package lens --package taggy-lens -
-package string-class --package classy-prelude
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE OverloadedStrings #-}

import ClassyPrelude
import Control.Lens hiding (children, element)
import Data.String.Class (toText, fromText, toString)
import Data.Text (Text)
import Text.Taggy.Lens
import qualified Text.Taggy.Lens as Taggy
import qualified Text.Taggy.Renderer as Renderer

somehtmlSmall :: Text
somehtmlSmall =
 "<!doctype html><html><body>\
 \<div id=\"article\"><div>first</div><div>second</div><script>this should be
removed</script><div>third</div></div>\
 \</body></html>"

renderWithoutScriptTag :: Text
renderWithoutScriptTag =
 let mArticle :: Maybe Taggy.Element
 mArticle =
 (fromText somehtmlSmall) ^? html .
 allAttributed (ix "id" . only "article")
 mArticleFiltered =
 fmap
 (transform
 (children %~
 filter (\n -> n ^? element . name /= Just "script")))
 mArticle
 in maybe "" (toText . Renderer.render) mArticleFiltered

main :: IO ()
main = print renderWithoutScriptTag
-- outputs:
-- "<div id=\"article\"><div>first</div><div>second</div><div>third</div></div>"

Contribution based upon @duplode's SO answer

Section 58.2: Extract the text contents from a div with a
particular id
Taggy-lens allows us to use lenses to parse and inspect HTML documents.

#!/usr/bin/env stack
-- stack --resolver lts-7.0 --install-ghc runghc --package text --package lens --package taggy-lens

http://stackoverflow.com/a/39865972/540810
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 179

{-# LANGUAGE OverloadedStrings #-}

import qualified Data.Text.Lazy as TL
import qualified Data.Text.IO as T
import Text.Taggy.Lens
import Control.Lens

someHtml :: TL.Text
someHtml =
 "\
 \<!doctype html><html><body>\
 \<div>first div</div>\
 \<div id=\"thediv\">second div</div>\
 \<div id=\"not-thediv\">third div</div>"

main :: IO ()
main = do
 T.putStrLn
 (someHtml ^. html . allAttributed (ix "id" . only "thediv") . contents)

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 180

Chapter 59: Foreign Function Interface
Section 59.1: Calling C from Haskell
For performance reasons, or due to the existence of mature C libraries, you may want to call C code from a Haskell
program. Here is a simple example of how you can pass data to a C library and get an answer back.

foo.c:

#include <inttypes.h>

int32_t foo(int32_t a) {
 return a+1;
}

Foo.hs:

import Data.Int

main :: IO ()
main = print =<< hFoo 41

foreign import ccall unsafe "foo" hFoo :: Int32 -> IO Int32

The unsafe keyword generates a more efficient call than 'safe', but requires that the C code never makes a callback
to the Haskell system. Since foo is completely in C and will never call Haskell, we can use unsafe.

We also need to instruct cabal to compile and link in C source.

foo.cabal:

name: foo
version: 0.0.0.1
build-type: Simple
extra-source-files: *.c
cabal-version: >= 1.10

executable foo
 default-language: Haskell2010
 main-is: Foo.hs
 C-sources: foo.c
 build-depends: base

Then you can run:

> cabal configure
> cabal build foo
> ./dist/build/foo/foo
42

Section 59.2: Passing Haskell functions as callbacks to C code
It is very common for C functions to accept pointers to other functions as arguments. Most popular example is
setting an action to be executed when a button is clicked in some GUI toolkit library. It is possible to pass Haskell
functions as C callbacks.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 181

To call this C function:

void event_callback_add (Object *obj, Object_Event_Cb func, const void *data)

we first import it to Haskell code:

foreign import ccall "header.h event_callback_add"
 callbackAdd :: Ptr () -> FunPtr Callback -> Ptr () -> IO ()

Now looking at how Object_Event_Cb is defined in C header, define what Callback is in Haskell:

type Callback = Ptr () -> Ptr () -> IO ()

Finally, create a special function that would wrap Haskell function of type Callback into a pointer FunPtr Callback:

foreign import ccall "wrapper"
 mkCallback :: Callback -> IO (FunPtr Callback)

Now we can register callback with C code:

cbPtr <- mkCallback $ \objPtr dataPtr -> do
 -- callback code
 return ()
callbackAdd cpPtr

It is important to free allocated FunPtr once you unregister the callback:

freeHaskellFunPtr cbPtr

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 182

Chapter 60: Gtk3
Section 60.1: Hello World in Gtk
This example show how one may create a simple "Hello World" in Gtk3, setting up a window and button widgets.
The sample code will also demonstrate how to set different attributes and actions on the widgets.

module Main (Main.main) where

import Graphics.UI.Gtk

main :: IO ()
main = do
 initGUI
 window <- windowNew
 on window objectDestroy mainQuit
 set window [containerBorderWidth := 10, windowTitle := "Hello World"]
 button <- buttonNew
 set button [buttonLabel := "Hello World"]
 on button buttonActivated $ do
 putStrLn "A \"clicked\"-handler to say \"destroy\""
 widgetDestroy window
 set window [containerChild := button]
 widgetShowAll window
 mainGUI -- main loop

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 183

Chapter 61: Monad Transformers
Section 61.1: A monadic counter
An example on how to compose the reader, writer, and state monad using monad transformers. The source code
can be found in this repository

We want to implement a counter, that increments its value by a given constant.

We start by defining some types, and functions:

newtype Counter = MkCounter {cValue :: Int}
 deriving (Show)

-- | 'inc c n' increments the counter by 'n' units.
inc :: Counter -> Int -> Counter
inc (MkCounter c) n = MkCounter (c + n)

Assume we want to carry out the following computation using the counter:

set the counter to 0
set the increment constant to 3
increment the counter 3 times
set the increment constant to 5
increment the counter 2 times

The state monad provides abstractions for passing state around. We can make use of the state monad, and define
our increment function as a state transformer.

-- | CounterS is a monad.
type CounterS = State Counter

-- | Increment the counter by 'n' units.
incS :: Int-> CounterS ()
incS n = modify (\c -> inc c n)

This already enables us to express a computation in a more clear and succinct way:

-- | The computation we want to run, with the state monad.
mComputationS :: CounterS ()
mComputationS = do
 incS 3
 incS 3
 incS 3
 incS 5
 incS 5

But we still have to pass the increment constant at each invocation. We would like to avoid this.

Adding an environment

The reader monad provides a convenient way to pass an environment around. This monad is used in functional
programming to perform what in the OO world is known as dependency injection.

In its simplest version, the reader monad requires two types:

https://github.com/capitanbatata/sandbox/tree/master/monadic-counter
https://hackage.haskell.org/package/mtl-2.2.1/docs/Control-Monad-State-Lazy.html#t:StateT
https://hackage.haskell.org/package/mtl-2.2.1/docs/Control-Monad-Reader.html#v:runReaderT
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 184

the type of the value being read (i.e. our environment, r below),

the value returned by the reader monad (a below).

Reader r a

However, we need to make use of the state monad as well. Thus, we need to use the ReaderT transformer:

newtype ReaderT r m a :: * -> (* -> *) -> * -> *

Using ReaderT, we can define our counter with environment and state as follows:

type CounterRS = ReaderT Int CounterS

We define an incR function that takes the increment constant from the environment (using ask), and to define our
increment function in terms of our CounterS monad we make use of the lift function (which belongs to the
monad transformer class).

-- | Increment the counter by the amount of units specified by the environment.
incR :: CounterRS ()
incR = ask >>= lift . incS

Using the reader monad we can define our computation as follows:

-- | The computation we want to run, using reader and state monads.
mComputationRS :: CounterRS ()
mComputationRS = do
 local (const 3) $ do
 incR
 incR
 incR
 local (const 5) $ do
 incR
 incR

The requirements changed: we need logging!

Now assume that we want to add logging to our computation, so that we can see the evolution of our counter in
time.

We also have a monad to perform this task, the writer monad. As with the reader monad, since we are composing
them, we need to make use of the reader monad transformer:

newtype WriterT w m a :: * -> (* -> *) -> * -> *

Here w represents the type of the output to accumulate (which has to be a monoid, which allow us to accumulate
this value), m is the inner monad, and a the type of the computation.

We can then define our counter with logging, environment, and state as follows:

type CounterWRS = WriterT [Int] CounterRS

And making use of lift we can define the version of the increment function which logs the value of the counter
after each increment:

https://hackage.haskell.org/package/transformers-0.1.3.0/docs/Control-Monad-Trans.html
https://hackage.haskell.org/package/mtl-2.2.1/docs/Control-Monad-Writer-Strict.html
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 185

incW :: CounterWRS ()
incW = lift incR >> get >>= tell . (:[]) . cValue

Now the computation that contains logging can be written as follows:

mComputationWRS :: CounterWRS ()
mComputationWRS = do
 local (const 3) $ do
 incW
 incW
 incW
 local (const 5) $ do
 incW
 incW

Doing everything in one go

This example intended to show monad transformers at work. However, we can achieve the same effect by
composing all the aspects (environment, state, and logging) in a single increment operation.

To do this we make use of type-constraints:

inc' :: (MonadReader Int m, MonadState Counter m, MonadWriter [Int] m) => m ()
inc' = ask >>= modify . (flip inc) >> get >>= tell . (:[]) . cValue

Here we arrive at a solution that will work for any monad that satisfies the constraints above. The computation
function is defined thus with type:

mComputation' :: (MonadReader Int m, MonadState Counter m, MonadWriter [Int] m) => m ()

since in its body we make use of inc'.

We could run this computation, in the ghci REPL for instance, as follows:

runState (runReaderT (runWriterT mComputation') 15) (MkCounter 0)

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 186

Chapter 62: Bifunctor
Section 62.1: Definition of Bifunctor
Bifunctor is the class of types with two type parameters (f :: * -> * -> *), both of which can be covariantly
mapped over simultaneously.

class Bifunctor f where
 bimap :: (a -> c) -> (b -> d) -> f a b -> f c d

bimap can be thought of as applying a pair of fmap operations to a datatype.

A correct instance of Bifunctor for a type f must satisfy the bifunctor laws, which are analogous to the functor laws:

bimap id id = id -- identity
bimap (f . g) (h . i) = bimap f h . bimap g i -- composition

The Bifunctor class is found in the Data.Bifunctor module. For GHC versions >7.10, this module is bundled with
the compiler; for earlier versions you need to install the bifunctors package.

Section 62.2: Common instances of Bifunctor
Two-element tuples

(,) is an example of a type that has a Bifunctor instance.

instance Bifunctor (,) where
 bimap f g (x, y) = (f x, g y)

bimap takes a pair of functions and applies them to the tuple's respective components.

bimap (+ 2) (++ "nie") (3, "john") --> (5,"johnnie")
bimap ceiling length (3.5 :: Double, "john" :: String) --> (4,4)

Either

Either's instance of Bifunctor selects one of the two functions to apply depending on whether the value is Left or
Right.

instance Bifunctor Either where
 bimap f g (Left x) = Left (f x)
 bimap f g (Right y) = Right (g y)

Section 62.3: first and second
If mapping covariantly over only the first argument, or only the second argument, is desired, then first or second
ought to be used (in lieu of bimap).

first :: Bifunctor f => (a -> c) -> f a b -> f c b
first f = bimap f id

second :: Bifunctor f => (b -> d) -> f a b -> f a d
second g = bimap id g

For example,

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 187

ghci> second (+ 2) (Right 40)
Right 42
ghci> second (+ 2) (Left "uh oh")
Left "uh oh"

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 188

Chapter 63: Proxies
Section 63.1: Using Proxy
The Proxy :: k -> * type, found in Data.Proxy, is used when you need to give the compiler some type
information - eg, to pick a type class instance - which is nonetheless irrelevant at runtime.

{-# LANGUAGE PolyKinds #-}

data Proxy a = Proxy

Functions which use a Proxy typically use ScopedTypeVariables to pick a type class instance based on the a type.

For example, the classic example of an ambiguous function,

showread :: String -> String
showread = show . read

which results in a type error because the elaborator doesn't know which instance of Show or Read to use, can be
resolved using Proxy:

{-# LANGUAGE ScopedTypeVariables #-}

import Data.Proxy

showread :: forall a. (Show a, Read a) => Proxy a -> String -> String
showread _ = (show :: a -> String) . read

When calling a function with Proxy, you need to use a type annotation to declare which a you meant.

ghci> showread (Proxy :: Proxy Int) "3"
"3"
ghci> showread (Proxy :: Proxy Bool) "'m'" -- attempt to parse a char literal as a Bool
"*** Exception: Prelude.read: no parse

Section 63.2: The "polymorphic proxy" idiom
Since Proxy contains no runtime information, there is never a need to pattern-match on the Proxy constructor. So a
common idiom is to abstract over the Proxy datatype using a type variable.

showread :: forall proxy a. (Show a, Read a) => proxy a -> String -> String
showread _ = (show :: a -> String) . read

Now, if you happen to have an f a in scope for some f, you don't need to write out Proxy :: Proxy a when calling
f.

ghci> let chars = "foo" -- chars :: [Char]
ghci> showread chars "'a'"
"'a'"

Section 63.3: Proxy is like ()
Since Proxy contains no runtime information, you can always write a natural transformation f a -> Proxy a for
any f.

https://hackage.haskell.org/package/base-4.9.0.0/docs/Data-Proxy.html
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 189

proxy :: f a -> Proxy a
proxy _ = Proxy

This is just like how any given value can always be erased to ():

unit :: a -> ()
unit _ = ()

Technically, Proxy is the terminal object in the category of functors, just like () is the terminal object in the category
of values.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 190

Chapter 64: Applicative Functor
Applicative is the class of types f :: * -> * which allows lifted function application over a structure where the
function is also embedded in that structure.

Section 64.1: Alternative definition
Since every Applicative Functor is a Functor, fmap can always be used on it; thus the essence of Applicative is the
pairing of carried contents, as well as the ability to create it:

class Functor f => PairingFunctor f where
 funit :: f () -- create a context, carrying nothing of import
 fpair :: (f a,f b) -> f (a,b) -- collapse a pair of contexts into a pair-carrying context

This class is isomorphic to Applicative.

pure a = const a <$> funit = a <$ funit

fa <*> fb = (\(a,b) -> a b) <$> fpair (fa, fb) = uncurry ($) <$> fpair (fa, fb)

Conversely,

funit = pure ()

fpair (fa, fb) = (,) <$> fa <*> fb

Section 64.2: Common instances of Applicative
Maybe

Maybe is an applicative functor containing a possibly-absent value.

instance Applicative Maybe where
 pure = Just

 Just f <*> Just x = Just $ f x
 _ <*> _ = Nothing

pure lifts the given value into Maybe by applying Just to it. The (<*>) function applies a function wrapped in a Maybe
to a value in a Maybe. If both the function and the value are present (constructed with Just), the function is applied
to the value and the wrapped result is returned. If either is missing, the computation can't proceed and Nothing is
returned instead.

Lists

One way for lists to fit the type signature <*> :: [a -> b] -> [a] -> [b] is to take the two lists' Cartesian
product, pairing up each element of the first list with each element of the second one:

fs <*> xs = [f x | f <- fs, x <- xs]
 -- = do { f <- fs; x <- xs; return (f x) }

pure x = [x]

This is usually interpreted as emulating nondeterminism, with a list of values standing for a nondeterministic value

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 191

whose possible values range over that list; so a combination of two nondeterministic values ranges over all possible
combinations of the values in the two lists:

ghci> [(+1),(+2)] <*> [3,30,300]
[4,31,301,5,32,302]

Infinite streams and zip-lists

There's a class of Applicatives which "zip" their two inputs together. One simple example is that of infinite
streams:

data Stream a = Stream { headS :: a, tailS :: Stream a }

Stream's Applicative instance applies a stream of functions to a stream of arguments point-wise, pairing up the
values in the two streams by position. pure returns a constant stream – an infinite list of a single fixed value:

instance Applicative Stream where
 pure x = let s = Stream x s in s
 Stream f fs <*> Stream x xs = Stream (f x) (fs <*> xs)

Lists too admit a "zippy" Applicative instance, for which there exists the ZipList newtype:

newtype ZipList a = ZipList { getZipList :: [a] }

instance Applicative ZipList where
 ZipList xs <*> ZipList ys = ZipList $ zipWith ($) xs ys

Since zip trims its result according to the shortest input, the only implementation of pure that satisfies the
Applicative laws is one which returns an infinite list:

 pure a = ZipList (repeat a) -- ZipList (fix (a:)) = ZipList [a,a,a,a,...

For example:

ghci> getZipList $ ZipList [(+1),(+2)] <*> ZipList [3,30,300]
[4,32]

The two possibilities remind us of the outer and the inner product, similar to multiplying a 1-column (n x 1) matrix
with a 1-row (1 x m) one in the first case, getting the n x m matrix as a result (but flattened); or multiplying a 1-row
and a 1-column matrices (but without the summing up) in the second case.

Functions

When specialised to functions (->) r, the type signatures of pure and <*> match those of the K and S combinators,
respectively:

pure :: a -> (r -> a)
<*> :: (r -> (a -> b)) -> (r -> a) -> (r -> b)

pure must be const, and <*> takes a pair of functions and applies them each to a fixed argument, applying the two
results:

instance Applicative ((->) r) where
 pure = const
 f <*> g = \x -> f x (g x)

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 192

Functions are the prototypical "zippy" applicative. For example, since infinite streams are isomorphic to (->) Nat, ...

-- | Index into a stream
to :: Stream a -> (Nat -> a)
to (Stream x xs) Zero = x
to (Stream x xs) (Suc n) = to xs n

-- | List all the return values of the function in order
from :: (Nat -> a) -> Stream a
from f = from' Zero
 where from' n = Stream (f n) (from' (Suc n))

... representing streams in a higher-order way produces the zippy Applicative instance automatically.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 193

Chapter 65: Common monads as free
monads
Section 65.1: Free Empty ~~ Identity
Given

data Empty a

we have

data Free Empty a
 = Pure a
-- the Free constructor is impossible!

which is isomorphic to

data Identity a
 = Identity a

Section 65.2: Free Identity ~~ (Nat,) ~~ Writer Nat
Given

data Identity a = Identity a

we have

data Free Identity a
 = Pure a
 | Free (Identity (Free Identity a))

which is isomorphic to

data Deferred a
 = Now a
 | Later (Deferred a)

or equivalently (if you promise to evaluate the fst element first) (Nat, a), aka Writer Nat a, with

data Nat = Z | S Nat
data Writer Nat a = Writer Nat a

Section 65.3: Free Maybe ~~ MaybeT (Writer Nat)
Given

data Maybe a = Just a
 | Nothing

we have

data Free Maybe a

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 194

 = Pure a
 | Free (Just (Free Maybe a))
 | Free Nothing

which is equivalent to

data Hopes a
 = Confirmed a
 | Possible (Hopes a)
 | Failed

or equivalently (if you promise to evaluate the fst element first) (Nat, Maybe a), aka MaybeT (Writer Nat) a with

data Nat = Z | S Nat
data Writer Nat a = Writer Nat a
data MaybeT (Writer Nat) a = MaybeT (Nat, Maybe a)

Section 65.4: Free (Writer w) ~~ Writer [w]
Given

data Writer w a = Writer w a

we have

data Free (Writer w) a
 = Pure a
 | Free (Writer w (Free (Writer w) a))

which is isomorphic to

data ProgLog w a
 = Done a
 | After w (ProgLog w a)

or, equivalently, (if you promise to evaluate the log first), Writer [w] a.

Section 65.5: Free (Const c) ~~ Either c
Given

data Const c a = Const c

we have

data Free (Const c) a
 = Pure a
 | Free (Const c)

which is isomorphic to

data Either c a
 = Right a
 | Left c

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 195

Section 65.6: Free (Reader x) ~~ Reader (Stream x)
Given

data Reader x a = Reader (x -> a)

we have

data Free (Reader x) a
 = Pure a
 | Free (x -> Free (Reader x) a)

which is isomorphic to

data Demand x a
 = Satisfied a
 | Hungry (x -> Demand x a)

or equivalently Stream x -> a with

data Stream x = Stream x (Stream x)

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 196

Chapter 66: Common functors as the base
of cofree comonads
Section 66.1: Cofree Empty ~~ Empty
Given

data Empty a

we have

data Cofree Empty a
 -- = a :< ... not possible!

Section 66.2: Cofree (Const c) ~~ Writer c
Given

data Const c a = Const c

we have

data Cofree (Const c) a
 = a :< Const c

which is isomorphic to

data Writer c a = Writer c a

Section 66.3: Cofree Identity ~~ Stream
Given

data Identity a = Identity a

we have

data Cofree Identity a
 = a :< Identity (Cofree Identity a)

which is isomorphic to

data Stream a = Stream a (Stream a)

Section 66.4: Cofree Maybe ~~ NonEmpty
Given

data Maybe a = Just a
 | Nothing

we have

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 197

data Cofree Maybe a
 = a :< Just (Cofree Maybe a)
 | a :< Nothing

which is isomorphic to

data NonEmpty a
 = NECons a (NonEmpty a)
 | NESingle a

Section 66.5: Cofree (Writer w) ~~ WriterT w Stream
Given

data Writer w a = Writer w a

we have

data Cofree (Writer w) a
 = a :< (w, Cofree (Writer w) a)

which is equivalent to

data Stream (w,a)
 = Stream (w,a) (Stream (w,a))

which can properly be written as WriterT w Stream with

data WriterT w m a = WriterT (m (w,a))

Section 66.6: Cofree (Either e) ~~ NonEmptyT (Writer e)
Given

data Either e a = Left e
 | Right a

we have

data Cofree (Either e) a
 = a :< Left e
 | a :< Right (Cofree (Either e) a)

which is isomorphic to

data Hospitable e a
 = Sorry_AllIHaveIsThis_Here'sWhy a e
 | EatThis a (Hospitable e a)

or, if you promise to only evaluate the log after the complete result, NonEmptyT (Writer e) a with

data NonEmptyT (Writer e) a = NonEmptyT (e,a,[a])

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 198

Section 66.7: Cofree (Reader x) ~~ Moore x
Given

data Reader x a = Reader (x -> a)

we have

data Cofree (Reader x) a
 = a :< (x -> Cofree (Reader x) a)

which is isomorphic to

data Plant x a
 = Plant a (x -> Plant x a)

aka Moore machine.

http://hackage.haskell.org/package/machines-0.6.1/docs/Data-Machine-Moore.html#t:Moore
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 199

Chapter 67: Arithmetic
The numeric typeclass hierarchy

Num sits at the root of the numeric typeclass hierarchy. Its characteristic operations and some common instances
are shown below (the ones loaded by default with Prelude plus those of Data.Complex):

λ> :i Num
class Num a where
 (+) :: a -> a -> a
 (-) :: a -> a -> a
 (*) :: a -> a -> a
 negate :: a -> a
 abs :: a -> a
 signum :: a -> a
 fromInteger :: Integer -> a
 {-# MINIMAL (+), (*), abs, signum, fromInteger, (negate | (-)) #-}
 -- Defined in ‘GHC.Num’
instance RealFloat a => Num (Complex a) -- Defined in ‘Data.Complex’
instance Num Word -- Defined in ‘GHC.Num’
instance Num Integer -- Defined in ‘GHC.Num’
instance Num Int -- Defined in ‘GHC.Num’
instance Num Float -- Defined in ‘GHC.Float’
instance Num Double -- Defined in ‘GHC.Float’

We have already seen the Fractional class, which requires Num and introduces the notions of "division" (/) and
reciprocal of a number:

λ> :i Fractional
class Num a => Fractional a where
 (/) :: a -> a -> a
 recip :: a -> a
 fromRational :: Rational -> a
 {-# MINIMAL fromRational, (recip | (/)) #-}
 -- Defined in ‘GHC.Real’
instance RealFloat a => Fractional (Complex a) -- Defined in ‘Data.Complex’
instance Fractional Float -- Defined in ‘GHC.Float’
instance Fractional Double -- Defined in ‘GHC.Float’

The Real class models .. the real numbers. It requires Num and Ord, therefore it models an ordered numerical field.
As a counterexample, Complex numbers are not an ordered field (i.e. they do not possess a natural ordering
relationship):

λ> :i Real
class (Num a, Ord a) => Real a where
 toRational :: a -> Rational
 {-# MINIMAL toRational #-}
 -- Defined in ‘GHC.Real’
instance Real Word -- Defined in ‘GHC.Real’
instance Real Integer -- Defined in ‘GHC.Real’
instance Real Int -- Defined in ‘GHC.Real’
instance Real Float -- Defined in ‘GHC.Float’
instance Real Double -- Defined in ‘GHC.Float’

RealFrac represents numbers that may be rounded

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 200

λ> :i RealFrac
class (Real a, Fractional a) => RealFrac a where
 properFraction :: Integral b => a -> (b, a)
 truncate :: Integral b => a -> b
 round :: Integral b => a -> b
 ceiling :: Integral b => a -> b
 floor :: Integral b => a -> b
 {-# MINIMAL properFraction #-}
 -- Defined in ‘GHC.Real’
instance RealFrac Float -- Defined in ‘GHC.Float’
instance RealFrac Double -- Defined in ‘GHC.Float’

Floating (which implies Fractional) represents constants and operations that may not have a finite decimal
expansion.

λ> :i Floating
class Fractional a => Floating a where
 pi :: a
 exp :: a -> a
 log :: a -> a
 sqrt :: a -> a
 (**) :: a -> a -> a
 logBase :: a -> a -> a
 sin :: a -> a
 cos :: a -> a
 tan :: a -> a
 asin :: a -> a
 acos :: a -> a
 atan :: a -> a
 sinh :: a -> a
 cosh :: a -> a
 tanh :: a -> a
 asinh :: a -> a
 acosh :: a -> a
 atanh :: a -> a
 GHC.Float.log1p :: a -> a
 GHC.Float.expm1 :: a -> a
 GHC.Float.log1pexp :: a -> a
 GHC.Float.log1mexp :: a -> a
 {-# MINIMAL pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh,
 asinh, acosh, atanh #-}
 -- Defined in ‘GHC.Float’
instance RealFloat a => Floating (Complex a) -- Defined in ‘Data.Complex’
instance Floating Float -- Defined in ‘GHC.Float’
instance Floating Double -- Defined in ‘GHC.Float’

Caution: while expressions such as sqrt . negate :: Floating a => a -> a are perfectly valid, they might return
NaN ("not-a-number"), which may not be an intended behaviour. In such cases, we might want to work over the
Complex field (shown later).

In Haskell, all expressions (which includes numerical constants and functions operating on those) have a decidable
type. At compile time, the type-checker infers the type of an expression from the types of the elementary functions
that compose it. Since data is immutable by default, there are no "type casting" operations, but there are functions
that copy data and generalize or specialize the types within reason.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 201

Section 67.1: Basic examples
λ> :t 1
1 :: Num t => t

λ> :t pi
pi :: Floating a => a

In the examples above, the type-checker infers a type-class rather than a concrete type for the two constants. In
Haskell, the Num class is the most general numerical one (since it encompasses integers and reals), but pi must
belong to a more specialized class, since it has a nonzero fractional part.

list0 :: [Integer]
list0 = [1, 2, 3]

list1 :: [Double]
list1 = [1, 2, pi]

The concrete types above were inferred by GHC. More general types like list0 :: Num a => [a] would have
worked, but would have also been harder to preserve (e.g. if one consed a Double onto a list of Nums), due to the
caveats shown above.

Section 67.2: `Could not deduce (Fractional Int) ...`
The error message in the title is a common beginner mistake. Let's see how it arises and how to fix it.

Suppose we need to compute the average value of a list of numbers; the following declaration would seem to do it,
but it wouldn't compile:

averageOfList ll = sum ll / length ll

The problem is with the division (/) function: its signature is (/) :: Fractional a => a -> a -> a, but in the
case above the denominator (given by length :: Foldable t => t a -> Int) is of type Int (and Int does not
belong to the Fractional class) hence the error message.

We can fix the error message with fromIntegral :: (Num b, Integral a) => a -> b. One can see that this
function accepts values of any Integral type and returns corresponding ones in the Num class:

averageOfList' :: (Foldable t, Fractional a) => t a -> a
averageOfList' ll = sum ll / fromIntegral (length ll)

Section 67.3: Function examples
What's the type of (+) ?

λ> :t (+)
(+) :: Num a => a -> a -> a

What's the type of sqrt ?

λ> :t sqrt
sqrt :: Floating a => a -> a

What's the type of sqrt . fromIntegral ?

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 202

sqrt . fromIntegral :: (Integral a, Floating c) => a -> c

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 203

Chapter 68: Role
The TypeFamilies language extension allows the programmer to define type-level functions. What distinguishes
type functions from non-GADT type constructors is that parameters of type functions can be non-parametric
whereas parameters of type constructors are always parametric. This distinction is important to the correctness of
the GeneralizedNewTypeDeriving extension. To explicate this distinction, roles are introduced in Haskell.

Section 68.1: Nominal Role
Haskell Wiki has an example of a non-parametric parameter of a type function:

type family Inspect x
type instance Inspect Age = Int
type instance Inspect Int = Bool

Here x is non-parametric because to determine the outcome of applying Inspect to a type argument, the type
function must inspect x.

In this case, the role of x is nominal. We can declare the role explicitly with the RoleAnnotations extension:

type role Inspect nominal

Section 68.2: Representational Role
An example of a parametric parameter of a type function:

data List a = Nil | Cons a (List a)

type family DoNotInspect x
type instance DoNotInspect x = List x

Here x is parametric because to determine the outcome of applying DoNotInspect to a type argument, the type
function do not need to inspect x.

In this case, the role of x is representational. We can declare the role explicitly with the RoleAnnotations extension:

type role DoNotInspect representational

Section 68.3: Phantom Role
A phantom type parameter has a phantom role. Phantom roles cannot be declared explicitly.

https://ghc.haskell.org/trac/ghc/wiki/Roles
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 204

Chapter 69: Arbitrary-rank polymorphism
with RankNTypes
GHC’s type system supports arbitrary-rank explicit universal quantification in types through the use of the
Rank2Types and RankNTypes language extensions.

Section 69.1: RankNTypes
StackOverflow forces me to have one example. If this topic is approved, we should move this example here.

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 205

Chapter 70: GHCJS
GHCJS is a Haskell to JavaScript compiler that uses the GHC API.

Section 70.1: Running "Hello World!" with Node.js
ghcjs can be invoked with the same command line arguments as ghc. The generated programs can be run directly
from the shell with Node.js and SpiderMonkey jsshell. for example:

$ ghcjs -o helloWorld helloWorld.hs
$ node helloWorld.jsexe/all.js
Hello world!

http://nodejs.org/
http://download.cdn.mozilla.net/pub/firefox/nightly/latest-mozilla-central/
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 206

Chapter 71: XML
Encoding and decoding of XML documents.

Section 71.1: Encoding a record using the `xml` library
{-# LANGUAGE RecordWildCards #-}
import Text.XML.Light

data Package = Package
 { pOrderNo :: String
 , pOrderPos :: String
 , pBarcode :: String
 , pNumber :: String
 }

-- | Create XML from a Package
instance Node Package where
 node qn Package {..} =
 node qn
 [unode "package_number" pNumber
 , unode "package_barcode" pBarcode
 , unode "order_number" pOrderNo
 , unode "order_position" pOrderPos
]

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 207

Chapter 72: Reader / ReaderT
Reader provides functionality to pass a value along to each function. A helpful guide with some diagrams can be
found here: http://adit.io/posts/2013-06-10-three-useful-monads.html

Section 72.1: Simple demonstration
A key part of the Reader monad is the ask
(https://hackage.haskell.org/package/mtl-2.2.1/docs/Control-Monad-Reader.html#v:ask) function, which is defined
for illustrative purposes:

import Control.Monad.Trans.Reader hiding (ask)
import Control.Monad.Trans

ask :: Monad m => ReaderT r m r
ask = reader id

main :: IO ()
main = do
 let f = (runReaderT $ readerExample) :: Integer -> IO String
 x <- f 100
 print x
 --
 let fIO = (runReaderT $ readerExampleIO) :: Integer -> IO String
 y <- fIO 200
 print y

readerExample :: ReaderT Integer IO String
readerExample = do
 x <- ask
 return $ "The value is: " ++ show x

liftAnnotated :: IO a -> ReaderT Integer IO a
liftAnnotated = lift

readerExampleIO :: ReaderT Integer IO String
readerExampleIO = do
 x <- reader id
 lift $ print "Hello from within"
 liftAnnotated $ print "Hello from within..."
 return $ "The value is: " ++ show x

The above will print out:

"The value is: 100"
"Hello from within"
"Hello from within..."
"The value is: 200"

http://adit.io/posts/2013-06-10-three-useful-monads.html
https://hackage.haskell.org/package/mtl-2.2.1/docs/Control-Monad-Reader.html#v:ask)
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 208

Chapter 73: Function call syntax
Haskell's function call syntax, explained with comparisons to C-style languages where applicable. This is aimed at
people who are coming to Haskell from a background in C-style languages.

Section 73.1: Partial application - Part 1
In Haskell, functions can be partially applied; we can think of all functions as taking a single argument, and
returning a modified function for which that argument is constant. To illustrate this, we can bracket functions as
follows:

(((plus) 1) 2)

Here, the function (plus) is applied to 1 yielding the function ((plus) 1), which is applied to 2, yielding the
function (((plus) 1) 2). Because plus 1 2 is a function which takes no arguments, you can consider it a plain
value; however in Haskell, there is little distinction between functions and values.

To go into more detail, the function plus is a function that adds its arguments.
The function plus 1 is a function that adds 1 to its argument.
The function plus 1 2 is a function that adds 1 to 2, which is always the value 3.

Section 73.2: Partial application - Part 2
As another example, we have the function map, which takes a function and a list of values, and applies the function
to each value of the list:

map :: (a -> b) -> [a] -> [b]

Let's say we want to increment each value in a list. You may decide to define your own function, which adds one to
its argument, and map that function over your list

addOne x = plus 1 x
map addOne [1,2,3]

but if you have another look at addOne's definition, with parentheses added for emphasis:

(addOne) x = ((plus) 1) x

The function addOne, when applied to any value x, is the same as the partially applied function plus 1 applied to x.
This means the functions addOne and plus 1 are identical, and we can avoid defining a new function by just
replacing addOne with plus 1, remembering to use parentheses to isolate plus 1 as a subexpression:

map (plus 1) [1,2,3]

Section 73.3: Parentheses in a basic function call
For a C-style function call, e.g.

plus(a, b); // Parentheses surrounding only the arguments, comma separated

Then the equivalent Haskell code will be

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 209

(plus a b) -- Parentheses surrounding the function and the arguments, no commas

In Haskell, parentheses are not explicitly required for function application, and are only used to disambiguate
expressions, like in mathematics; so in cases where the brackets surround all the text in the expression, the
parentheses are actually not needed, and the following is also equivalent:

plus a b -- no parentheses are needed here!

It is important to remember that while in C-style languages, the function

Section 73.4: Parentheses in embedded function calls
In the previous example, we didn't end up needing the parentheses, because they did not affect the meaning of the
statement. However, they are often necessary in more complex expression, like the one below.
In C:

plus(a, take(b, c));

In Haskell this becomes:

(plus a (take b c))
-- or equivalently, omitting the outermost parentheses
plus a (take b c)

Note, that this is not equivalent to:

plus a take b c -- Not what we want!

One might think that because the compiler knows that take is a function, it would be able to know that you want to
apply it to the arguments b and c, and pass its result to plus.
However, in Haskell, functions often take other functions as arguments, and little actual distinction is made
between functions and other values; and so the compiler cannot assume your intention simply because take is a
function.

And so, the last example is analogous to the following C function call:

plus(a, take, b, c); // Not what we want!

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 210

Chapter 74: Logging
Logging in Haskell is achieved usually through functions in the IO monad, and so is limited to non-pure functions or
"IO actions".

There are several ways to log information in a Haskell program: from putStrLn (or print), to libraries such as
hslogger or through Debug.Trace.

Section 74.1: Logging with hslogger
The hslogger module provides a similar API to Python's logging framework, and supports hierarchically named
loggers, levels and redirection to handles outside of stdout and stderr.

By default, all messages of level WARNING and above are sent to stderr and all other log levels are ignored.

import System.Log.Logger (Priority (DEBUG), debugM, infoM, setLevel,
 updateGlobalLogger, warningM)

main = do
 debugM "MyProgram.main" "This won't be seen"
 infoM "MyProgram.main" "This won't be seen either"
 warningM "MyProgram.main" "This will be seen"

We can set the level of a logger by its name using updateGlobalLogger:

 updateGlobalLogger "MyProgram.main" (setLevel DEBUG)

 debugM "MyProgram.main" "This will now be seen"

Each Logger has a name, and they are arranged hierarchically, so MyProgram is a parent of MyParent.Module.

https://hackage.haskell.org/package/hslogger
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 211

Chapter 75: Attoparsec
Type Detail

Parser i a The core type for representing a parser. i is the string type, e.g. ByteString.

IResult i r The result of a parse, with Fail i [String] String, Partial (i -> IResult i r) and Done i r as
constructors.

Attoparsec is a parsing combinator library that is "aimed particularly at dealing efficiently with network protocols
and complicated text/binary file formats".

Attoparsec offers not only speed and efficiency, but backtracking and incremental input.

Its API closely mirrors that of another parser combinator library, Parsec.

There are submodules for compatibility with ByteString, Text and Char8. Use of the OverloadedStrings language
extension is recommended.

Section 75.1: Combinators
Parsing input is best achieved through larger parser functions that are composed of smaller, single purpose ones.

Let's say we wished to parse the following text which represents working hours:

Monday: 0800 1600.

We could split these into two "tokens": the day name -- "Monday" -- and a time portion "0800" to "1600".

To parse a day name, we could write the following:

data Day = Day String day :: Parser Day day = do name <- takeWhile1 (/= ':') skipMany1 (char ':') skipSpace return $
Day name

To parse the time portion we could write:

data TimePortion = TimePortion String String time = do start <- takeWhile1 isDigit skipSpace end <- takeWhile1
isDigit return $ TimePortion start end

Now we have two parsers for our individual parts of the text, we can combine these in a "larger" parser to read an
entire day's working hours:

data WorkPeriod = WorkPeriod Day TimePortion work = do d <- day t <- time return $ WorkPeriod d t

and then run the parser:

parseOnly work "Monday: 0800 1600"

Section 75.2: Bitmap - Parsing Binary Data
Attoparsec makes parsing binary data trivial. Assuming these definitions:

import Data.Attoparsec.ByteString (Parser, eitherResult, parse, take)
import Data.Binary.Get (getWord32le, runGet)
import Data.ByteString (ByteString, readFile)

https://hackage.haskell.org/package/attoparsec-0.13.1.0/docs/Data-Attoparsec-Internal-Types.html#t:IResult
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 212

import Data.ByteString.Char8 (unpack)
import Data.ByteString.Lazy (fromStrict)
import Prelude hiding (readFile, take)

-- The DIB section from a bitmap header
data DIB = BM | BA | CI | CP | IC | PT
 deriving (Show, Read)

type Reserved = ByteString

-- The entire bitmap header
data Header = Header DIB Int Reserved Reserved Int
 deriving (Show)

We can parse the header from a bitmap file easily. Here, we have 4 parser functions that represent the header
section from a bitmap file:

Firstly, the DIB section can be read by taking the first 2 bytes

dibP :: Parser DIB
dibP = read . unpack <$> take 2

Similarly, the size of the bitmap, the reserved sections and the pixel offset can be read easily too:

sizeP :: Parser Int
sizeP = fromIntegral . runGet getWord32le . fromStrict <$> take 4

reservedP :: Parser Reserved
reservedP = take 2

addressP :: Parser Int
addressP = fromIntegral . runGet getWord32le . fromStrict <$> take 4

which can then be combined into a larger parser function for the entire header:

bitmapHeader :: Parser Header
bitmapHeader = do
 dib <- dibP
 sz <- sizeP
 reservedP
 reservedP
 offset <- addressP
 return $ Header dib sz "" "" offset

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 213

Chapter 76: zipWithM
zipWithM is to zipWith as mapM is to map: it lets you combine two lists using a monadic function.

From the module Control.Monad

Section 76.1: Calculatings sales prices
Suppose you want to see if a certain set of sales prices makes sense for a store.

The items originally cost $5, so you don't want to accept the sale if the sales price is less for any of them, but you do
want to know what the new price is otherwise.

Calculating one price is easy: you calculate the sales price, and return Nothing if you don't get a profit:

calculateOne :: Double -> Double -> Maybe Double
calculateOne price percent = let newPrice = price*(percent/100)
 in if newPrice < 5 then Nothing else Just newPrice

To calculate it for the entire sale, zipWithM makes it really simple:

calculateAllPrices :: [Double] -> [Double] -> Maybe [Double]
calculateAllPrices prices percents = zipWithM calculateOne prices percents

This will return Nothing if any of the sales prices are below $5.

http://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad.html#v:zipWithM
http://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad.html#v:zipWithM
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 214

Chapter 77: Profunctor
Profunctor is a typeclass provided by the profunctors package in Data.Profunctor.

See the "Remarks" section for a full explanation.

Section 77.1: (->) Profunctor
(->) is a simple example of a profunctor: the left argument is the input to a function, and the right argument is the
same as the reader functor instance.

instance Profunctor (->) where
 lmap f g = g . f
 rmap f g = g . g

http://hackage.haskell.org/package/profunctors-5.2/docs/Data-Profunctor.html
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 215

Chapter 78: Type Application
TypeApplications are an alternative to type annotations when the compiler struggles to infer types for a given
expression.

This series of examples will explain the purpose of the TypeApplications extension and how to use it

Don't forget to enable the extension by placing {-# LANGUAGE TypeApplications #-} at the top of your source file.

Section 78.1: Avoiding type annotations
We use type annotations to avoid ambiguity. Type applications can be used for the same purpose. For example

x :: Num a => a
x = 5

main :: IO ()
main = print x

This code has an ambiguity error. We know that a has a Num instance, and in order to print it we know it needs a
Show instance. This could work if a was, for example, an Int, so to fix the error we can add a type annotation

main = print (x :: Int)

Another solution using type applications would look like this

main = print @Int x

To understand what this means we need to look at the type signature of print.

print :: Show a => a -> IO ()

The function takes one parameter of type a, but another way to look at it is that it actually takes two parameters.
The first one is a type parameter, the second one is a value whose type is the first parameter.

The main difference between value parameters and the type parameters is that the latter ones are implicitly
provided to functions when we call them. Who provides them? The type inference algorithm! What
TypeApplications let us do is give those type parameters explicitly. This is especially useful when the type
inference can't determine the correct type.

So to break down the above example

print :: Show a => a -> IO ()
print @Int :: Int -> IO ()
print @Int x :: IO ()

Section 78.2: Type applications in other languages
If you're familiar with languages like Java, C# or C++ and the concept of generics/templates then this comparison
might be useful for you.

Say we have a generic function in C#

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 216

public static T DoNothing<T>(T in) { return in; }

To call this function with a float we can do DoNothing(5.0f) or if we want to be explicit we can say
DoNothing<float>(5.0f). That part inside of the angle brackets is the type application.

In Haskell it's the same, except that the type parameters are not only implicit at call sites but also at definition sites.

doNothing :: a -> a
doNothing x = x

This can also be made explicit using either ScopedTypeVariables, Rank2Types or RankNTypes extensions like this.

doNothing :: forall a. a -> a
doNothing x = x

Then at the call site we can again either write doNothing 5.0 or doNothing @Float 5.0

Section 78.3: Order of parameters
The problem with type arguments being implicit becomes obvious once we have more than one. Which order do
they come in?

const :: a -> b -> a

Does writing const @Int mean a is equal to Int, or is it b? In case we explicitly state the type parameters using a
forall like const :: forall a b. a -> b -> a then the order is as written: a, then b.

If we don't, then the order of variables is from left to right. The first variable to be mentioned is the first type
parameter, the second is the second type parameter and so on.

What if we want to specify the second type variable, but not the first? We can use a wildcard for the first variable
like this

const @_ @Int

The type of this expression is

const @_ @Int :: a -> Int -> a

Section 78.4: Interaction with ambiguous types
Say you're introducing a class of types that have a size in bytes.

class SizeOf a where
 sizeOf :: a -> Int

The problem is that the size should be constant for every value of that type. We don't actually want the sizeOf
function to depend on a, but only on it's type.

Without type applications, the best solution we had was the Proxy type defined like this

data Proxy a = Proxy

The purpose of this type is to carry type information, but no value information. Then our class could look like this

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 217

class SizeOf a where
 sizeOf :: Proxy a -> Int

Now you might be wondering, why not drop the first argument altogether? The type of our function would then just
be sizeOf :: Int or, to be more precise because it is a method of a class, sizeOf :: SizeOf a => Int or to be
even more explicit sizeOf :: forall a. SizeOf a => Int.

The problem is type inference. If I write sizeOf somewhere, the inference algorithm only knows that I expect an
Int. It has no idea what type I want to substitute for a. Because of this, the definition gets rejected by the compiler
unless you have the {-# LANGUAGE AllowAmbiguousTypes #-} extension enabled. In that case the definition
compiles,it just can't be used anywhere without an ambiguity error.

Luckily, the introduction of type applications saves the day! Now we can write sizeOf @Int, explicitly saying that a is
Int. Type applications allow us to provide a type parameter, even if it doesn't appear in the actual parameters of the
function!

https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 218

Credits
Thank you greatly to all the people from Stack Overflow Documentation who helped provide this content,

more changes can be sent to web@petercv.com for new content to be published or updated

3442 Chapter 10
Adam Wagner Chapter 2
Alec Chapters 18 and 37
alejosocorro Chapter 1
Amitay Stern Chapter 1
Antal Spector Chapter 7
arjanen Chapter 9
arrowd Chapters 14, 29, 38 and 59
arseniiv Chapters 1, 12, 21 and 32
Bartek Banachewicz Chapters 5 and 7
baxbaxwalanuksiwe Chapter 1
Benjamin Hodgson Chapters 3, 4, 6, 8, 10, 13, 15, 18, 21, 22, 23, 24, 26, 50, 51, 55, 62, 63 and 64
Benjamin Kovach Chapters 1, 7, 14 and 24
Billy Brown Chapter 9
bleakgadfly Chapters 59 and 60
Brian Min Chapter 16
Burkhard Chapter 1
Cactus Chapters 3, 7, 8, 9, 11, 24, 36, 44 and 52
carpemb Chapter 19
Carsten Chapter 2
Chris Stryczynski Chapters 34 and 72
Christof Schramm Chapter 50
CiscoIPPhone Chapter 12
crockeea Chapter 59
Dair Chapter 19
Damian Nadales Chapter 61
Daniel Jour Chapter 1
David Grayson Chapter 10
Delapouite Chapter 25
dkasak Chapter 22
Doruk Chapter 35
dsign Chapter 5
erisco Chapters 1 and 15
fgb Chapter 18
Firas Moalla Chapter 15
Gallifreyan Chapters 1 and 15
gdziadkiewicz Chapters 1, 6 and 9
Itbot Chapter 36
J Atkin Chapter 1
J. Abrahamson Chapters 3, 4, 5, 8, 9, 10 and 14
James Chapters 23 and 25
Janos Potecki Chapters 7, 11, 15, 19, 23, 25, 28, 31, 34 and 48
jkeuhlen Chapter 22
John F. Miller Chapters 5, 7 and 11
Jules Chapter 1
K48 Chapter 7
Kapol Chapters 18 and 28

mailto:web@petercv.com
https://stackoverflow.com/users/5249858/
https://stackoverflow.com/users/331473/
https://stackoverflow.com/users/3072788/
https://stackoverflow.com/users/1330831/
https://stackoverflow.com/users/3676450/
https://stackoverflow.com/users/237428/
https://stackoverflow.com/users/3498703/
https://stackoverflow.com/users/637669/
https://stackoverflow.com/users/3071700/
https://stackoverflow.com/users/752976/
https://stackoverflow.com/users/5559663/
https://stackoverflow.com/users/1523776/
https://stackoverflow.com/users/933616/
https://stackoverflow.com/users/1406083/
https://stackoverflow.com/users/143279/
https://stackoverflow.com/users/6213508/
https://stackoverflow.com/users/12860/
https://stackoverflow.com/users/477476/
https://stackoverflow.com/users/3961879/
https://stackoverflow.com/users/76051/
https://stackoverflow.com/users/1663462/
https://stackoverflow.com/users/5085294/
https://stackoverflow.com/users/70365/
https://stackoverflow.com/users/925978/
https://stackoverflow.com/users/667648/
https://stackoverflow.com/users/2289983/
https://stackoverflow.com/users/1116364/
https://stackoverflow.com/users/28128/
https://stackoverflow.com/users/232943/
https://stackoverflow.com/users/5276520/
https://stackoverflow.com/users/1397858/
https://stackoverflow.com/users/296827/
https://stackoverflow.com/users/260584/
https://stackoverflow.com/users/298029/
https://stackoverflow.com/users/3390291/
https://stackoverflow.com/users/6712145/
https://stackoverflow.com/users/2976345/
https://stackoverflow.com/users/6683598/
https://stackoverflow.com/users/4683264/
https://stackoverflow.com/users/476408/
https://stackoverflow.com/users/3943162/
https://stackoverflow.com/users/4359476/
https://stackoverflow.com/users/3806046/
https://stackoverflow.com/users/163177/
https://stackoverflow.com/users/1033027/
https://stackoverflow.com/users/6269864/
https://stackoverflow.com/users/3053082/
https://goalkicker.com/

GoalKicker.com – Haskell Notes for Professionals 219

Kostiantyn Rybnikov Chapter 58
Kwarrtz Chapters 1, 5, 9, 18 and 46
leftaroundabout Chapters 1, 2, 7, 9, 10, 17, 42, 43, 56, 65 and 66
liminalisht Chapters 26 and 62
Luis Casillas Chapter 54
Luka Horvat Chapter 78
Lynn Chapters 15 and 18
Mads Buch Chapter 7
Mario Román Chapters 14, 18 and 41
mathk Chapter 26
Matthew Pickering Chapters 5, 6, 11, 12 and 34
Matthew Walton Chapter 15
mb21 Chapter 1
Mikkel Chapters 70 and 71
Mirzhan Irkegulov Chapter 15
mkovacs Chapter 7
mniip Chapters 7, 17 and 20
mnoronha Chapters 1, 3, 15, 22, 26, 46, 52, 56 and 64
Mr Tsjolder Chapter 1
ocharles Chapters 1 and 69
ocramz Chapter 67
pdexter Chapter 2
pouya Chapter 1
Sebastian Graf Chapter 1
Shoe Chapter 16
Stephane Rolland Chapter 55
Steve Trout Chapter 6
tlo Chapters 27 and 40
Toxaris Chapter 52
Undreren Chapter 29
unhammer Chapter 22
user239558 Chapter 1
user2407038 Chapters 10, 14, 15, 24, 43 and 49
Vektorweg Chapter 16

Will Ness Chapters 1, 10, 12, 13, 15, 16, 18, 24, 25, 26, 32, 35, 36, 37, 43, 45, 46, 51 and
64

Wysaard Chapter 53
xuh Chapters 17, 34 and 68
Yosh Chapters 7 and 15
zbw Chapters 1, 76 and 77
zeronone Chapter 9
Zoey Hewll Chapter 73

λlεx Chapters 1, 7, 9, 10, 11, 15, 18, 23, 25, 26, 30, 31, 33, 35, 36, 38, 39, 45, 47, 48,
51, 55, 57, 58, 64, 74 and 75

https://stackoverflow.com/users/540810/
https://stackoverflow.com/users/4725625/
https://stackoverflow.com/users/745903/
https://stackoverflow.com/users/1667161/
https://stackoverflow.com/users/1094403/
https://stackoverflow.com/users/1031627/
https://stackoverflow.com/users/257418/
https://stackoverflow.com/users/1324454/
https://stackoverflow.com/users/2552681/
https://stackoverflow.com/users/343957/
https://stackoverflow.com/users/3710751/
https://stackoverflow.com/users/241544/
https://stackoverflow.com/users/214446/
https://stackoverflow.com/users/668354/
https://stackoverflow.com/users/596361/
https://stackoverflow.com/users/6621837/
https://stackoverflow.com/users/2337954/
https://stackoverflow.com/users/2608433/
https://stackoverflow.com/users/4375377/
https://stackoverflow.com/users/74497/
https://stackoverflow.com/users/2890063/
https://stackoverflow.com/users/1587319/
https://stackoverflow.com/users/4366566/
https://stackoverflow.com/users/388010/
https://stackoverflow.com/users/493122/
https://stackoverflow.com/users/356440/
https://stackoverflow.com/users/148260/
https://stackoverflow.com/users/1306877/
https://stackoverflow.com/users/2555037/
https://stackoverflow.com/users/1264675/
https://stackoverflow.com/users/69663/
https://stackoverflow.com/users/239558/
https://stackoverflow.com/users/2407038/
https://stackoverflow.com/users/1188670/
https://stackoverflow.com/users/849891/
https://stackoverflow.com/users/1816721/
https://stackoverflow.com/users/6765537/
https://stackoverflow.com/users/3026489/
https://stackoverflow.com/users/7847896/
https://stackoverflow.com/users/1525842/
https://stackoverflow.com/users/6112457/
https://stackoverflow.com/users/27385/
https://stackoverflow.com/users/27385/
https://stackoverflow.com/users/27385/
https://stackoverflow.com/users/27385/
https://goalkicker.com/

You may also like

https://goalkicker.com/CBook
https://goalkicker.com/CSharpBook
https://goalkicker.com/CPlusPlusBook
https://goalkicker.com/JavaBook
https://goalkicker.com/PerlBook
https://goalkicker.com/PHPBook
https://goalkicker.com/PythonBook
https://goalkicker.com/RBook
https://goalkicker.com/RubyBook

	Content list
	About
	Chapter 1: Getting started with Haskell Language
	Section 1.1: Getting started
	Section 1.2: Hello, World!
	Section 1.3: Factorial
	Section 1.4: Fibonacci, Using Lazy Evaluation
	Section 1.5: Primes
	Section 1.6: Declaring Values

	Chapter 2: Overloaded Literals
	Section 2.1: Strings
	Section 2.2: Floating Numeral
	Section 2.3: Integer Numeral
	Section 2.4: List Literals

	Chapter 3: Foldable
	Section 3.1: Deﬁnition of Foldable
	Section 3.2: An instance of Foldable for a binary tree
	Section 3.3: Counting the elements of a Foldable structure
	Section 3.4: Folding a structure in reverse
	Section 3.5: Flattening a Foldable structure into a list
	Section 3.6: Performing a side-eect for each element of a Foldable structure
	Section 3.7: Flattening a Foldable structure into a Monoid
	Section 3.8: Checking if a Foldable structure is empty

	Chapter 4: Traversable
	Section 4.1: Deﬁnition of Traversable
	Section 4.2: Traversing a structure in reverse
	Section 4.3: An instance of Traversable for a binary tree
	Section 4.4: Traversable structures as shapes with contents
	Section 4.5: Instantiating Functor and Foldable for a Traversable structure
	Section 4.6: Transforming a Traversable structure with the aid of an accumulating parameter
	Section 4.7: Transposing a list of lists

	Chapter 5: Lens
	Section 5.1: Lenses for records
	Section 5.2: Manipulating tuples with Lens
	Section 5.3: Lens and Prism
	Section 5.4: Stateful Lenses
	Section 5.5: Lenses compose
	Section 5.6: Writing a lens without Template Haskell
	Section 5.7: Fields with makeFields
	Section 5.8: Classy Lenses
	Section 5.9: Traversals

	Chapter 6: QuickCheck
	Section 6.1: Declaring a property
	Section 6.2: Randomly generating data for custom types
	Section 6.3: Using implication (==>) to check properties with preconditions
	Section 6.4: Checking a single property
	Section 6.5: Checking all the properties in a ﬁle
	Section 6.6: Limiting the size of test data

	Chapter 7: Common GHC Language Extensions
	Section 7.1: RankNTypes
	Section 7.2: OverloadedStrings
	Section 7.3: BinaryLiterals
	Section 7.4: ExistentialQuantiﬁcation
	Section 7.5: LambdaCase
	Section 7.6: FunctionalDependencies
	Section 7.7: FlexibleInstances
	Section 7.8: GADTs
	Section 7.9: TupleSections
	Section 7.10: OverloadedLists
	Section 7.11: MultiParamTypeClasses
	Section 7.12: UnicodeSyntax
	Section 7.13: PatternSynonyms
	Section 7.14: ScopedTypeVariables
	Section 7.15: RecordWildCards

	Chapter 8: Free Monads
	Section 8.1: Free monads split monadic computations into data structures and interpreters
	Section 8.2: The Freer monad
	Section 8.3: How do foldFree and iterM work?
	Section 8.4: Free Monads are like ﬁxed points

	Chapter 9: Type Classes
	Section 9.1: Eq
	Section 9.2: Monoid
	Section 9.3: Ord
	Section 9.4: Num
	Section 9.5: Maybe and the Functor Class
	Section 9.6: Type class inheritance: Ord type class

	Chapter 10: IO
	Section 10.1: Getting the 'a' "out of" 'IO a'
	Section 10.2: IO deﬁnes your program's `main` action
	Section 10.3: Checking for end-of-ﬁle conditions
	Section 10.4: Reading all contents of standard input into a string
	Section 10.5: Role and Purpose of IO
	Section 10.6: Writing to stdout
	Section 10.7: Reading words from an entire ﬁle
	Section 10.8: Reading a line from standard input
	Section 10.9: Reading from `stdin`
	Section 10.10: Parsing and constructing an object from standard input
	Section 10.11: Reading from ﬁle handles

	Chapter 11: Record Syntax
	Section 11.1: Basic Syntax
	Section 11.2: Deﬁning a data type with ﬁeld labels
	Section 11.3: RecordWildCards
	Section 11.4: Copying Records while Changing Field Values
	Section 11.5: Records with newtype

	Chapter 12: Partial Application
	Section 12.1: Sections
	Section 12.2: Partially Applied Adding Function
	Section 12.3: Returning a Partially Applied Function

	Chapter 13: Monoid
	Section 13.1: An instance of Monoid for lists
	Section 13.2: Collapsing a list of Monoids into a single value
	Section 13.3: Numeric Monoids
	Section 13.4: An instance of Monoid for ()

	Chapter 14: Category Theory
	Section 14.1: Category theory as a system for organizing abstraction
	Section 14.2: Haskell types as a category
	Section 14.3: Deﬁnition of a Category
	Section 14.4: Coproduct of types in Hask
	Section 14.5: Product of types in Hask
	Section 14.6: Haskell Applicative in terms of Category Theory

	Chapter 15: Lists
	Section 15.1: List basics
	Section 15.2: Processing lists
	Section 15.3: Ranges
	Section 15.4: List Literals
	Section 15.5: List Concatenation
	Section 15.6: Accessing elements in lists
	Section 15.7: Basic Functions on Lists
	Section 15.8: Transforming with `map`
	Section 15.9: Filtering with `ﬁlter`
	Section 15.10: foldr
	Section 15.11: Zipping and Unzipping Lists
	Section 15.12: foldl

	Chapter 16: Sorting Algorithms
	Section 16.1: Insertion Sort
	Section 16.2: Permutation Sort
	Section 16.3: Merge Sort
	Section 16.4: Quicksort
	Section 16.5: Bubble sort
	Section 16.6: Selection sort

	Chapter 17: Type Families
	Section 17.1: Datatype Families
	Section 17.2: Type Synonym Families
	Section 17.3: Injectivity

	Chapter 18: Monads
	Section 18.1: Deﬁnition of Monad
	Section 18.2: No general way to extract value from a monadic computation
	Section 18.3: Monad as a Subclass of Applicative
	Section 18.4: The Maybe monad
	Section 18.5: IO monad
	Section 18.6: List Monad
	Section 18.7: do-notation

	Chapter 19: Stack
	Section 19.1: Proﬁling with Stack
	Section 19.2: Structure
	Section 19.3: Build and Run a Stack Project
	Section 19.4: Viewing dependencies
	Section 19.5: Stack install
	Section 19.6: Installing Stack
	Section 19.7: Creating a simple project
	Section 19.8: Stackage Packages and changing the LTS (resolver) version

	Chapter 20: Generalized Algebraic Data Types
	Section 20.1: Basic Usage

	Chapter 21: Recursion Schemes
	Section 21.1: Fixed points
	Section 21.2: Primitive recursion
	Section 21.3: Primitive corecursion
	Section 21.4: Folding up a structure one layer at a time
	Section 21.5: Unfolding a structure one layer at a time
	Section 21.6: Unfolding and then folding, fused

	Chapter 22: Data.Text
	Section 22.1: Text Literals
	Section 22.2: Checking if a Text is a substring of another Text
	Section 22.3: Stripping whitespace
	Section 22.4: Indexing Text
	Section 22.5: Splitting Text Values
	Section 22.6: Encoding and Decoding Text

	Chapter 23: Using GHCi
	Section 23.1: Breakpoints with GHCi
	Section 23.2: Quitting GHCi
	Section 23.3: Reloading a already loaded ﬁle
	Section 23.4: Starting GHCi
	Section 23.5: Changing the GHCi default prompt
	Section 23.6: The GHCi conﬁguration ﬁle
	Section 23.7: Loading a ﬁle
	Section 23.8: Multi-line statements

	Chapter 24: Strictness
	Section 24.1: Bang Patterns
	Section 24.2: Lazy patterns
	Section 24.3: Normal forms
	Section 24.4: Strict ﬁelds

	Chapter 25: Syntax in Functions
	Section 25.1: Pattern Matching
	Section 25.2: Using where and guards
	Section 25.3: Guards

	Chapter 26: Functor
	Section 26.1: Class Deﬁnition of Functor and Laws
	Section 26.2: Replacing all elements of a Functor with a single value
	Section 26.3: Common instances of Functor
	Section 26.4: Deriving Functor
	Section 26.5: Polynomial functors
	Section 26.6: Functors in Category Theory

	Chapter 27: Testing with Tasty
	Section 27.1: SmallCheck, QuickCheck and HUnit

	Chapter 28: Creating Custom Data Types
	Section 28.1: Creating a data type with value constructor parameters
	Section 28.2: Creating a data type with type parameters
	Section 28.3: Creating a simple data type
	Section 28.4: Custom data type with record parameters

	Chapter 29: Reactive-banana
	Section 29.1: Injecting external events into the library
	Section 29.2: Event type
	Section 29.3: Actuating EventNetworks
	Section 29.4: Behavior type

	Chapter 30: Optimization
	Section 30.1: Compiling your Program for Proﬁling
	Section 30.2: Cost Centers

	Chapter 31: Concurrency
	Section 31.1: Spawning Threads with `forkIO`
	Section 31.2: Communicating between Threads with `MVar`
	Section 31.3: Atomic Blocks with Software Transactional Memory

	Chapter 32: Function composition
	Section 32.1: Right-to-left composition
	Section 32.2: Composition with binary function
	Section 32.3: Left-to-right composition

	Chapter 33: Databases
	Section 33.1: Postgres

	Chapter 34: Data.Aeson - JSON in Haskell
	Section 34.1: Smart Encoding and Decoding using Generics
	Section 34.2: A quick way to generate a Data.Aeson.Value
	Section 34.3: Optional Fields

	Chapter 35: Higher-order functions
	Section 35.1: Basics of Higher Order Functions
	Section 35.2: Lambda Expressions
	Section 35.3: Currying

	Chapter 36: Containers - Data.Map
	Section 36.1: Importing the Module
	Section 36.2: Monoid instance
	Section 36.3: Constructing
	Section 36.4: Checking If Empty
	Section 36.5: Finding Values
	Section 36.6: Inserting Elements
	Section 36.7: Deleting Elements

	Chapter 37: Fixity declarations
	Section 37.1: Associativity
	Section 37.2: Binding precedence
	Section 37.3: Example declarations

	Chapter 38: Web Development
	Section 38.1: Servant
	Section 38.2: Yesod

	Chapter 39: Vectors
	Section 39.1: The Data.Vector Module
	Section 39.2: Filtering a Vector
	Section 39.3: Mapping (`map`) and Reducing (`fold`) a Vector
	Section 39.4: Working on Multiple Vectors

	Chapter 40: Cabal
	Section 40.1: Working with sandboxes
	Section 40.2: Install packages

	Chapter 41: Type algebra
	Section 41.1: Addition and multiplication
	Section 41.2: Functions
	Section 41.3: Natural numbers in type algebra
	Section 41.4: Recursive types
	Section 41.5: Derivatives

	Chapter 42: Arrows
	Section 42.1: Function compositions with multiple channels

	Chapter 43: Typed holes
	Section 43.1: Syntax of typed holes
	Section 43.2: Semantics of typed holes
	Section 43.3: Using typed holes to deﬁne a class instance

	Chapter 44: Rewrite rules (GHC)
	Section 44.1: Using rewrite rules on overloaded functions

	Chapter 45: Date and Time
	Section 45.1: Finding Today's Date
	Section 45.2: Adding, Subtracting and Comparing Days

	Chapter 46: List Comprehensions
	Section 46.1: Basic List Comprehensions
	Section 46.2: Do Notation
	Section 46.3: Patterns in Generator Expressions
	Section 46.4: Guards
	Section 46.5: Parallel Comprehensions
	Section 46.6: Local Bindings
	Section 46.7: Nested Generators

	Chapter 47: Streaming IO
	Section 47.1: Streaming IO

	Chapter 48: Google Protocol Buers
	Section 48.1: Creating, building and using a simple .proto ﬁle

	Chapter 49: Template Haskell & QuasiQuotes
	Section 49.1: Syntax of Template Haskell and Quasiquotes
	Section 49.2: The Q type
	Section 49.3: An n-arity curry

	Chapter 50: Phantom types
	Section 50.1: Use Case for Phantom Types: Currencies

	Chapter 51: Modules
	Section 51.1: Deﬁning Your Own Module
	Section 51.2: Exporting Constructors
	Section 51.3: Importing Speciﬁc Members of a Module
	Section 51.4: Hiding Imports
	Section 51.5: Qualifying Imports
	Section 51.6: Hierarchical module names

	Chapter 52: Tuples (Pairs, Triples, ...)
	Section 52.1: Extract tuple components
	Section 52.2: Strictness of matching a tuple
	Section 52.3: Construct tuple values
	Section 52.4: Write tuple types
	Section 52.5: Pattern Match on Tuples
	Section 52.6: Apply a binary function to a tuple (uncurrying)
	Section 52.7: Apply a tuple function to two arguments (currying)
	Section 52.8: Swap pair components

	Chapter 53: Graphics with Gloss
	Section 53.1: Installing Gloss
	Section 53.2: Getting something on the screen

	Chapter 54: State Monad
	Section 54.1: Numbering the nodes of a tree with a counter

	Chapter 55: Pipes
	Section 55.1: Producers
	Section 55.2: Connecting Pipes
	Section 55.3: Pipes
	Section 55.4: Running Pipes with runEect
	Section 55.5: Consumers
	Section 55.6: The Proxy monad transformer
	Section 55.7: Combining Pipes and Network communication

	Chapter 56: Inﬁx operators
	Section 56.1: Prelude
	Section 56.2: Finding information about inﬁx operators
	Section 56.3: Custom operators

	Chapter 57: Parallelism
	Section 57.1: The Eval Monad
	Section 57.2: rpar
	Section 57.3: rseq

	Chapter 58: Parsing HTML with taggy-lens and lens
	Section 58.1: Filtering elements from the tree
	Section 58.2: Extract the text contents from a div with a particular id

	Chapter 59: Foreign Function Interface
	Section 59.1: Calling C from Haskell
	Section 59.2: Passing Haskell functions as callbacks to C code

	Chapter 60: Gtk3
	Section 60.1: Hello World in Gtk

	Chapter 61: Monad Transformers
	Section 61.1: A monadic counter

	Chapter 62: Bifunctor
	Section 62.1: Deﬁnition of Bifunctor
	Section 62.2: Common instances of Bifunctor
	Section 62.3: ﬁrst and second

	Chapter 63: Proxies
	Section 63.1: Using Proxy
	Section 63.2: The "polymorphic proxy" idiom
	Section 63.3: Proxy is like ()

	Chapter 64: Applicative Functor
	Section 64.1: Alternative deﬁnition
	Section 64.2: Common instances of Applicative

	Chapter 65: Common monads as free monads
	Section 65.1: Free Empty ~~ Identity
	Section 65.2: Free Identity ~~ (Nat,) ~~ Writer Nat
	Section 65.3: Free Maybe ~~ MaybeT (Writer Nat)
	Section 65.4: Free (Writer w) ~~ Writer [w]
	Section 65.5: Free (Const c) ~~ Either c
	Section 65.6: Free (Reader x) ~~ Reader (Stream x)

	Chapter 66: Common functors as the base of cofree comonads
	Section 66.1: Cofree Empty ~~ Empty
	Section 66.2: Cofree (Const c) ~~ Writer c
	Section 66.3: Cofree Identity ~~ Stream
	Section 66.4: Cofree Maybe ~~ NonEmpty
	Section 66.5: Cofree (Writer w) ~~ WriterT w Stream
	Section 66.6: Cofree (Either e) ~~ NonEmptyT (Writer e)
	Section 66.7: Cofree (Reader x) ~~ Moore x

	Chapter 67: Arithmetic
	Section 67.1: Basic examples
	Section 67.2: `Could not deduce (Fractional Int) ...`
	Section 67.3: Function examples

	Chapter 68: Role
	Section 68.1: Nominal Role
	Section 68.2: Representational Role
	Section 68.3: Phantom Role

	Chapter 69: Arbitrary-rank polymorphism with RankNTypes
	Section 69.1: RankNTypes

	Chapter 70: GHCJS
	Section 70.1: Running "Hello World!" with Node.js

	Chapter 71: XML
	Section 71.1: Encoding a record using the `xml` library

	Chapter 72: Reader / ReaderT
	Section 72.1: Simple demonstration

	Chapter 73: Function call syntax
	Section 73.1: Partial application - Part 1
	Section 73.2: Partial application - Part 2
	Section 73.3: Parentheses in a basic function call
	Section 73.4: Parentheses in embedded function calls

	Chapter 74: Logging
	Section 74.1: Logging with hslogger

	Chapter 75: Attoparsec
	Section 75.1: Combinators
	Section 75.2: Bitmap - Parsing Binary Data

	Chapter 76: zipWithM
	Section 76.1: Calculatings sales prices

	Chapter 77: Profunctor
	Section 77.1: (->) Profunctor

	Chapter 78: Type Application
	Section 78.1: Avoiding type annotations
	Section 78.2: Type applications in other languages
	Section 78.3: Order of parameters
	Section 78.4: Interaction with ambiguous types

	Credits
	You may also like

